Superposition of two-mode squeezed states for quantum information
processing and quantum sensing
- URL: http://arxiv.org/abs/2102.01032v1
- Date: Mon, 1 Feb 2021 18:09:01 GMT
- Title: Superposition of two-mode squeezed states for quantum information
processing and quantum sensing
- Authors: Fernando R. Cardoso, Daniel Z. Rossatto, Gabriel P. L. M. Fernandes,
Gerard Higgins and Celso J. Villas-Boas
- Abstract summary: We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
- Score: 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate superpositions of two-mode squeezed states (TMSSs), which have
potential applications to quantum information processing and quantum sensing.
Firstly we study some properties of these nonclassical states such as the
statistics of each mode and the degree of entanglement between the two modes,
which can be higher than that of a TMSS with the same degree of squeezing. The
states we consider can be prepared by inducing two-mode Jaynes-Cummings and
anti-Jaynes-Cummings interactions in a system of two modes and a
spin-$\tfrac{1}{2}$ particle, for instance in the trapped ion domain, as
described here. We show that when two harmonic oscillators are prepared in a
superposition of two TMSSs, each reduced single-mode state can be
advantageously employed to sense arbitrary displacements of the mode in phase
space. The Wigner function of this reduced state exhibits a symmetrical peak
centered at the phase-space origin, which has the convenient peculiarity of
getting narrower in both quadratures simultaneously as the average photon
number increases. This narrow peakcan be used as the pointer of our quantum
sensor, with its position in phase space indicating the displacement undergone
by the oscillator.
Related papers
- Non-Gaussian generalized two-mode squeezing: applications to two-ensemble spin squeezing and beyond [0.0]
We show that the basic structure of these states can be generalized to arbitrary bipartite quantum systems.
We show that these general states can always be stabilized by a relatively simple Markovian dissipative process.
arXiv Detail & Related papers (2024-06-30T15:03:29Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Creation of Two-Mode Squeezed States in Atomic Mechanical Oscillators [6.445506003176312]
Two-mode squeezed states are entangled states with bipartite quantum correlations in continuous-variable systems.
We experimentally demonstrate two-mode squeezed states by employing atoms in a two-dimensional optical lattice as quantum registers.
arXiv Detail & Related papers (2023-11-09T07:13:07Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Transfer of quantum states and stationary quantum correlations in a
hybrid optomechanical network [6.216381549252352]
We study the effects of dynamical transfer and steady-state synchronization of quantum states in a hybrid optomechanical network.
It is found that high fidelity transfer of Schr"odinger's cat and squeezed states between the cavities modes is possible.
arXiv Detail & Related papers (2023-05-29T17:58:04Z) - Experimental Realization and Characterization of Stabilized Pair
Coherent States [4.486044407450978]
PCS is an interesting class of non-Gaussian continuous-variable entangled state.
PCS is at the heart of a promising quantum error correction code: the pair cat code.
We report an experimental demonstration of the pair coherent state of microwave photons in two superconducting cavities.
arXiv Detail & Related papers (2022-09-23T15:24:25Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z) - Limit Cycle Phase and Goldstone Mode in Driven Dissipative Systems [0.0]
We investigate the first- and second-order quantum dissipative phase transitions of a three-mode cavity with a Hubbard interaction.
Our theoretical predictions suggest that interacting multimode photonic systems are rich, versatile testbeds for investigating the crossovers between the mean-field picture and quantum phase transitions.
arXiv Detail & Related papers (2020-07-21T09:37:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.