論文の概要: Prior-Free Auctions for the Demand Side of Federated Learning
- arxiv url: http://arxiv.org/abs/2103.14375v1
- Date: Fri, 26 Mar 2021 10:22:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-29 12:30:24.818052
- Title: Prior-Free Auctions for the Demand Side of Federated Learning
- Title(参考訳): フェデレーション学習の需要側における事前無料オークション
- Authors: Andreas Haupt and Vaikkunth Mugunthan
- Abstract要約: 連合学習は、分散クライアントがセンシティブなトレーニングデータを共有することなく、共有機械学習モデルを学ぶことを可能にする。
自己関心のある顧客から金銭的貢献を集めるためのメカニズムfipfaを提案する。
MNISTデータセット上で実験を行い、FIPFAおよびFIPFAのインセンティブ特性に基づいて顧客のモデル品質をテストします。
- 参考スコア(独自算出の注目度): 0.76146285961466
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated learning (FL) is a paradigm that allows distributed clients to
learn a shared machine learning model without sharing their sensitive training
data. While largely decentralized, FL requires resources to fund a central
orchestrator or to reimburse contributors of datasets to incentivize
participation. Inspired by insights from prior-free auction design, we propose
a mechanism, FIPFA (Federated Incentive Payments via Prior-Free Auctions), to
collect monetary contributions from self-interested clients. The mechanism
operates in the semi-honest trust model and works even if clients have a
heterogeneous interest in receiving high-quality models, and the server does
not know the clients' level of interest. We run experiments on the MNIST
dataset to test clients' model quality under FIPFA and FIPFA's incentive
properties.
- Abstract(参考訳): Federated Learning(FL)は、分散クライアントが機密データを共有することなく、共有機械学習モデルを学ぶことができるパラダイムである。
主に分散化されているが、FLは中央オーケストレータへの資金提供や、データセットのコントリビュータへのインセンティブの支払いにリソースを必要としている。
先行自由オークションデザインの知見に触発されて,自己興味のある顧客から金銭的貢献を集めるためのFIPFA(Federated Incentive Payments via Prior-free Auctions)を提案する。
このメカニズムは半正直な信頼モデルで動作し、クライアントが高品質なモデルを受け取ることに対する異質な関心を持ち、サーバがクライアントの関心レベルを知らない場合でも機能する。
我々は、FIPFAおよびFIPFAのインセンティブ特性に基づいて、クライアントのモデル品質をテストするために、MNISTデータセット上で実験を行う。
関連論文リスト
- IMFL-AIGC: Incentive Mechanism Design for Federated Learning Empowered by Artificial Intelligence Generated Content [15.620004060097155]
フェデレートラーニング(FL)は、クライアントがローカルデータをアップロードすることなく、共有グローバルモデルを協調的にトレーニングできる、有望なパラダイムとして登場した。
顧客参加を促すため,データ品質を考慮したインセンティブ機構を提案する。
提案したメカニズムは,トレーニングの精度が高く,実世界のデータセットによるサーバコストの最大53.34%を削減できる。
論文 参考訳(メタデータ) (2024-06-12T07:47:22Z) - An Auction-based Marketplace for Model Trading in Federated Learning [54.79736037670377]
フェデレートラーニング(FL)は、局所的な分散データを用いたトレーニングモデルにおいて、その効果がますます認識されている。
FLはモデルのマーケットプレースであり、顧客は買い手と売り手の両方として振る舞う。
本稿では,性能向上に基づく適切な価格設定を実現するため,オークションベースのソリューションを提案する。
論文 参考訳(メタデータ) (2024-02-02T07:25:53Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
我々は,意図に基づくクライアント選択機構を備えた新しいPFLアルゴリズムであるFedACSを提案する。
FedACSは、類似したデータ分散を持つクライアント間のコラボレーションを強化するためのアテンションメカニズムを統合している。
CIFAR10とFMNISTの実験は、FedACSの優位性を検証する。
論文 参考訳(メタデータ) (2023-12-23T03:31:46Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Incentive Mechanism Design for Unbiased Federated Learning with
Randomized Client Participation [31.2017942327673]
本稿では,ランダムなクライアント参加を伴うフェデレーション学習(FL)のためのゲーム理論インセンティブ機構を提案する。
我々は,サーバのモデル性能向上とクライアントの利益向上を両立させることを実証した。
論文 参考訳(メタデータ) (2023-04-17T04:05:57Z) - Welfare and Fairness Dynamics in Federated Learning: A Client Selection
Perspective [1.749935196721634]
Federated Learning(FL)は、分散コンピューティングデバイスが共有学習モデルのトレーニングを可能にする、プライバシ保護学習技術である。
公正さやインセンティブといった顧客に対する経済的配慮は、まだ完全には検討されていない。
低品質なクライアントを除去するためのクライアント選択プロセスと、公正な報酬配分を保証するための送金プロセスを含む、新たなインセンティブ機構を提案する。
論文 参考訳(メタデータ) (2023-02-17T16:31:19Z) - FedToken: Tokenized Incentives for Data Contribution in Federated
Learning [33.93936816356012]
ブロックチェーン技術を基盤として,コントリビューションベースのトークン化インセンティブスキームである textttFedToken を提案する。
まず、モデル集約中の局所モデルの寄与を近似し、次に、クライアントが収束のために通信ラウンドを下げる戦略的スケジュールを立てる。
論文 参考訳(メタデータ) (2022-09-20T14:58:08Z) - Incentivizing Federated Learning [2.420324724613074]
本稿では,顧客に対して可能な限り多くのデータ提供を促すインセンティブメカニズムを提案する。
従来のインセンティブメカニズムとは異なり、私たちのアプローチはデータを収益化しません。
理論的には、ある条件下では、クライアントがフェデレーション学習に参加できる限り多くのデータを使用することを証明します。
論文 参考訳(メタデータ) (2022-05-22T23:02:43Z) - A Contract Theory based Incentive Mechanism for Federated Learning [52.24418084256517]
フェデレートラーニング(FL)は、データプライバシ保護機械学習パラダイムとして機能し、分散クライアントによってトレーニングされた協調モデルを実現する。
FLタスクを達成するために、タスクパブリッシャはFLサーバに金銭的なインセンティブを支払う必要があり、FLサーバはFLクライアントにタスクをオフロードする。
タスクがクライアントによってプライベートにトレーニングされているという事実から、FLクライアントに対して適切なインセンティブを設計することは困難である。
論文 参考訳(メタデータ) (2021-08-12T07:30:42Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - An Incentive Mechanism for Federated Learning in Wireless Cellular
network: An Auction Approach [75.08185720590748]
Federated Learning(FL)は、機械学習の分散問題に対処できる分散学習フレームワークである。
本稿では,1つの基地局(BS)と複数のモバイルユーザを含むFLシステムについて考察する。
我々は,BSとモバイルユーザの間のインセンティブメカニズムを,BSが競売業者であり,モバイルユーザが売り手であるオークションゲームとして定式化する。
論文 参考訳(メタデータ) (2020-09-22T01:50:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。