Geometric Affinity Propagation for Clustering with Network Knowledge
- URL: http://arxiv.org/abs/2103.14376v1
- Date: Fri, 26 Mar 2021 10:23:53 GMT
- Title: Geometric Affinity Propagation for Clustering with Network Knowledge
- Authors: Omar Maddouri, Xiaoning Qian, and Byung-Jun Yoon
- Abstract summary: Affinity propagation (AP) has proven to be a powerful exemplar-based approach that refines the set of optimal exemplars by iterative pairwise message updates.
We propose geometric-AP, a novel clustering algorithm that effectively extends AP to take advantage of the network topology.
- Score: 14.827797643173401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering data into meaningful subsets is a major task in scientific data
analysis. To date, various strategies ranging from model-based approaches to
data-driven schemes, have been devised for efficient and accurate clustering.
One important class of clustering methods that is of a particular interest is
the class of exemplar-based approaches. This interest primarily stems from the
amount of compressed information encoded in these exemplars that effectively
reflect the major characteristics of the respective clusters. Affinity
propagation (AP) has proven to be a powerful exemplar-based approach that
refines the set of optimal exemplars by iterative pairwise message updates.
However, a critical limitation is its inability to capitalize on known
networked relations between data points often available for various scientific
datasets. To mitigate this shortcoming, we propose geometric-AP, a novel
clustering algorithm that effectively extends AP to take advantage of the
network topology. Geometric-AP obeys network constraints and uses max-sum
belief propagation to leverage the available network topology for generating
smooth clusters over the network. Extensive performance assessment reveals a
significant enhancement in the quality of the clustering results when compared
to benchmark clustering schemes. Especially, we demonstrate that geometric-AP
performs extremely well even in cases where the original AP fails drastically.
Related papers
- Unfolding ADMM for Enhanced Subspace Clustering of Hyperspectral Images [43.152314090830174]
We introduce an innovative clustering architecture for hyperspectral images (HSI) by unfolding an iterative solver based on the Alternating Direction Method of Multipliers (ADMM) for sparse subspace clustering.
Our approach captures well the structural characteristics of HSI data by employing the K nearest neighbors algorithm as part of a structure preservation module.
arXiv Detail & Related papers (2024-04-10T15:51:46Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - A Generalized Framework for Predictive Clustering and Optimization [18.06697544912383]
Clustering is a powerful and extensively used data science tool.
In this article, we define a generalized optimization framework for predictive clustering.
We also present a joint optimization strategy that exploits mixed-integer linear programming (MILP) for global optimization.
arXiv Detail & Related papers (2023-05-07T19:56:51Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Network Clustering for Latent State and Changepoint Detection [0.0]
We propose a convex approach for the task of network clustering.
We provide an efficient algorithm for convex network clustering and demonstrate its effectiveness on synthetic examples.
arXiv Detail & Related papers (2021-11-01T21:51:45Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
Cluster assignment of large and complex images is a crucial but challenging task in pattern recognition and computer vision.
We present a novel evolutionary unsupervised learning representation model with iterative optimization.
We jointly fuzzy clustering to the deep reconstruction model, in which fuzzy membership is utilized to represent a clear structure of deep cluster assignments.
arXiv Detail & Related papers (2021-03-31T13:58:10Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.