Quantum theory of two-dimensional materials coupled to electromagnetic
resonators
- URL: http://arxiv.org/abs/2103.14488v5
- Date: Thu, 27 Jan 2022 06:54:12 GMT
- Title: Quantum theory of two-dimensional materials coupled to electromagnetic
resonators
- Authors: E. V. Denning, M. Wubs, N. Stenger, J. Mork, P. T. Kristensen
- Abstract summary: We present a microscopic quantum theory of light-matter interaction in pristine sheets of two-dimensional semiconductors coupled to localized electromagnetic resonators.
The light-matter interaction breaks the translation symmetry of excitons in the two-dimensional lattice, and we find that this symmetry-breaking interaction leads to the formation of a localized exciton state.
We quantify the influence of the environment and find that it is most pronounced for small lateral confinement length scales of the electromagnetic field in the resonator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a microscopic quantum theory of light-matter interaction in
pristine sheets of two-dimensional semiconductors coupled to localized
electromagnetic resonators such as optical nanocavities or plasmonic particles.
The light-matter interaction breaks the translation symmetry of excitons in the
two-dimensional lattice, and we find that this symmetry-breaking interaction
leads to the formation of a localized exciton state, which mimics the spatial
distribution of the electromagnetic field of the resonator. The localized
exciton state is in turn coupled to an environment of residual exciton states.
We quantify the influence of the environment and find that it is most
pronounced for small lateral confinement length scales of the electromagnetic
field in the resonator, and that environmental effects can be neglected if this
length scale is sufficiently large. The microscopic theory provides a
physically appealing derivation of the coupled oscillator models widely used to
model experiments on these types of systems, in which all observable quantities
are directly derived from the material parameters and the properties of the
resonant electromagnetic field. As a consistency check, we show that the theory
recovers the results of semiclassical electromagnetic calculations and
experimental measurements of the excitonic dielectric response in the linear
excitation limit. The theory, however, is not limited to linear response, and
in general describes nonlinear exciton-exciton interactions in the localized
exciton state, thereby providing a powerful means of investigating the
nonlinear optical response of such systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - General theory of cavity-mediated interactions between low-energy matter excitations [0.0]
cavity quantum electrodynamics engineering has been suggested as a way to enhance low-energy matter properties.
We investigate the effective interactions between low-energy matter excitations induced by the off-resonant coupling with cavity electromagnetic modes.
arXiv Detail & Related papers (2024-07-28T12:15:34Z) - Light-matter interactions in the vacuum of ultra-strongly coupled systems [0.0]
We study how the peculiar properties of the vacuum state of an ultra-strongly coupled system can affect basic light-matter interaction processes.
In this unconventional electromagnetic environment, an additional emitter no longer couples to the bare cavity photons, but rather to the polariton modes emerging from the ultra-strong coupling.
arXiv Detail & Related papers (2023-12-26T19:00:08Z) - Probing Electromagnetic Nonreciprocity with Quantum Geometry of Photonic
States [0.0]
We propose a contact-less detection using a cross-cavity device where a material of interest is placed at its centre.
We show that the optical properties of the material, such as Kerr and Faraday rotation, manifest in the coupling between the cavities' electromagnetic modes and in the shift of their resonant frequencies.
Our approach is expected to be applicable across a broad spectrum of experimental platforms including Fock states in optical cavities, or, coherent states in microwave and THz resonators.
arXiv Detail & Related papers (2023-10-24T20:37:09Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Cavity-induced exciton localisation and polariton blockade in
two-dimensional semiconductors coupled to an electromagnetic resonator [0.0]
Recent experiments have demonstrated strong light-matter coupling between electromagnetic nanoresonators and pristine sheets of two-dimensional semiconductors.
We present a first-principles microscopic quantum theory for the interaction between excitons in an infinite sheet of two-dimensional material and a localised electromagnetic resonator.
We predict that polariton blockade due to nonlinear exciton-exciton interactions is well within reach for nanoresonators coupled to transition-metal dichalcogenides.
arXiv Detail & Related papers (2021-03-26T14:16:34Z) - Vectorial polaritons in the quantum motion of a levitated nanosphere [0.0]
We show the generation of phonon-polaritons in the quantum motion of an optically-levitated nanosphere.
Our results pave the way to novel protocols for quantum information transfer between photonic and phononic components.
arXiv Detail & Related papers (2020-12-30T18:26:28Z) - Directional emission of down-converted photons from a dielectric
nano-resonator [55.41644538483948]
We theoretically describe the generation of photon pairs in the process of spontaneous parametric down-conversion.
We reveal that highly directional photon-pair generation can be observed utilising the nonlinear Kerker-type effect.
arXiv Detail & Related papers (2020-11-16T10:30:04Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.