Limitations on Uncloneable Encryption and Simultaneous One-Way-to-Hiding
- URL: http://arxiv.org/abs/2103.14510v3
- Date: Thu, 4 Nov 2021 17:15:25 GMT
- Title: Limitations on Uncloneable Encryption and Simultaneous One-Way-to-Hiding
- Authors: Christian Majenz, Christian Schaffner and Mehrdad Tahmasbi
- Abstract summary: We study uncloneable quantum encryption schemes for classical messages.
We focus on the information-theoretic setting and give several limitations on the structure and security of these schemes.
- Score: 17.660958043781154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study uncloneable quantum encryption schemes for classical messages as
recently proposed by Broadbent and Lord. We focus on the information-theoretic
setting and give several limitations on the structure and security of these
schemes: Concretely, 1) We give an explicit cloning-indistinguishable attack
that succeeds with probability $\frac12 + \mu/16$ where $\mu$ is related to the
largest eigenvalue of the resulting quantum ciphertexts. 2) For a uniform
message distribution, we partially characterize the scheme with the minimal
success probability for cloning attacks. 3) Under natural symmetry conditions,
we prove that the rank of the ciphertext density operators has to grow at least
logarithmically in the number of messages to ensure uncloneable security. 4)
The \emph{simultaneous} one-way-to-hiding (O2H) lemma is an important technique
in recent works on uncloneable encryption and quantum copy protection. We give
an explicit example which shatters the hope of reducing the multiplicative
"security loss" constant in this lemma to below 9/8.
Related papers
- Cloning Games, Black Holes and Cryptography [53.93687166730726]
This paper is the new, natural, notion of Haar cloning games together with two applications.
In the area of black-hole physics, our game reveals that, in an idealized model of a black hole, the information from infalling entangled qubits can only be recovered from either the interior or the exterior.
In the area of quantum cryptography, our game helps us construct succinct unclonable encryption schemes from the existence of pseudorandom unitaries.
arXiv Detail & Related papers (2024-11-07T14:09:32Z) - Towards Unconditional Uncloneable Encryption [1.18749525824656]
Uncloneable encryption is a cryptographic primitive which encrypts a classical message into a quantum ciphertext.
We show that the adversary's success probability in the related security game converges quadratically as $1/2+1/ (2sqrtK)$, where $K$ represents the number of keys and $1/2$ is trivially achievable.
arXiv Detail & Related papers (2024-10-30T14:40:06Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - A Modular Approach to Unclonable Cryptography [4.336971448707467]
We propose unclonable puncturable obfuscation (UPO) and study its implications for unclonable cryptography.
We present modular (and arguably, simple) constructions of many primitives in unclonable cryptography.
We show that any cryptographic functionality can be copy-protected as long as this functionality satisfies a notion of security.
arXiv Detail & Related papers (2023-11-20T16:22:52Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Cloning Games: A General Framework for Unclonable Primitives [8.140799273465545]
cloning games captures fundamental unclonable primitives such as quantum money, copy-protection, unclonable encryption, single-decryptor encryption, and many more.
We construct unclonable encryption in the quantum random oracle model based on BB84 states, improving upon the previous work, which used coset states.
We establish a relationship between different challenge distributions of copy-protection schemes and single-decryptor encryption schemes.
arXiv Detail & Related papers (2023-02-03T17:24:38Z) - On the Feasibility of Unclonable Encryption, and More [16.64327673223307]
We show that encryption schemes satisfying unclonable indistinguishability exist unconditionally in the quantum random oracle model.
We also establish the feasibility of copy-protection for single-bit output point functions.
arXiv Detail & Related papers (2022-07-14T01:03:56Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Unclonable Encryption, Revisited [7.129830575525267]
Unclonable encryption, introduced by Broadbent and Lord (TQC'20), is an encryption scheme with the following attractive feature.
We construct unclonable encryption schemes with semantic security.
We show that unclonable encryption implies copy-protection for a simple class of unlearnable functions.
arXiv Detail & Related papers (2021-03-27T22:37:59Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
We introduce a quantum copy-protection scheme for a class of evasive functions known as " compute-and-compare programs"
We prove that our scheme achieves non-trivial security against fully malicious adversaries in the quantum random oracle model (QROM)
As a complementary result, we show that the same scheme fulfils a weaker notion of software protection, called "secure software leasing"
arXiv Detail & Related papers (2020-09-29T08:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.