Revocable Encryption, Programs, and More: The Case of Multi-Copy Security
- URL: http://arxiv.org/abs/2410.13163v1
- Date: Thu, 17 Oct 2024 02:37:40 GMT
- Title: Revocable Encryption, Programs, and More: The Case of Multi-Copy Security
- Authors: Prabhanjan Ananth, Saachi Mutreja, Alexander Poremba,
- Abstract summary: We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
- Score: 48.53070281993869
- License:
- Abstract: Fundamental principles of quantum mechanics have inspired many new research directions, particularly in quantum cryptography. One such principle is quantum no-cloning which has led to the emerging field of revocable cryptography. Roughly speaking, in a revocable cryptographic primitive, a cryptographic object (such as a ciphertext or program) is represented as a quantum state in such a way that surrendering it effectively translates into losing the capability to use this cryptographic object. All of the revocable cryptographic systems studied so far have a major drawback: the recipient only receives one copy of the quantum state. Worse yet, the schemes become completely insecure if the recipient receives many identical copies of the same quantum state -- a property that is clearly much more desirable in practice. While multi-copy security has been extensively studied for a number of other quantum cryptographic primitives, it has so far received only little treatment in context of unclonable primitives. Our work, for the first time, shows the feasibility of revocable primitives, such as revocable encryption and revocable programs, which satisfy multi-copy security in oracle models. This suggest that the stronger notion of multi-copy security is within reach in unclonable cryptography more generally, and therefore could lead to a new research direction in the field.
Related papers
- Relating Quantum Tamper-Evident Encryption to Other Cryptographic Notions [0.0]
A quantum tamper-evident encryption scheme is a non-interactive symmetric-key encryption scheme mapping classical messages to quantum ciphertexts.
This quantum cryptographic primitive was first introduced by Gottesman in 2003.
We further our understanding of tamper-evident encryption by formally relating it to other cryptographic primitives in an information-theoretic setting.
arXiv Detail & Related papers (2024-11-05T02:20:29Z) - Public-Key Encryption with Quantum Keys [11.069434965621683]
We study the notion of quantum public-key encryption (qPKE) where keys are allowed to be quantum states.
We show that computational assumptions are necessary to build quantum public-key encryption.
arXiv Detail & Related papers (2023-06-13T11:32:28Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - A practical quantum encryption protocol with varying encryption
configurations [0.0]
We propose a quantum encryption protocol that utilizes a quantum algorithm to create blocks oftext ciphers based on quantum states.
The main feature of our quantum encryption protocol is that the encryption configuration of each block is determined by the previous blocks.
arXiv Detail & Related papers (2021-01-22T20:09:03Z) - A quantum encryption design featuring confusion, diffusion, and mode of
operation [0.0]
We propose a non-OTP quantum encryption scheme utilizing a quantum state creation process to encrypt messages.
As essentially a non-OTP quantum block cipher the method stands out against existing methods with the following features.
arXiv Detail & Related papers (2020-10-06T22:23:30Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
We introduce a quantum copy-protection scheme for a class of evasive functions known as " compute-and-compare programs"
We prove that our scheme achieves non-trivial security against fully malicious adversaries in the quantum random oracle model (QROM)
As a complementary result, we show that the same scheme fulfils a weaker notion of software protection, called "secure software leasing"
arXiv Detail & Related papers (2020-09-29T08:41:53Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.