Nonthermal pathways to ultrafast control in quantum materials
- URL: http://arxiv.org/abs/2103.14888v2
- Date: Fri, 24 Sep 2021 08:06:58 GMT
- Title: Nonthermal pathways to ultrafast control in quantum materials
- Authors: A. de la Torre, D. M. Kennes, M. Claassen, S. Gerber, J. W. McIver, M.
A. Sentef
- Abstract summary: We review recent progress in utilizing ultrafast light-matter interaction to control the macroscopic properties of quantum materials.
Particular emphasis is placed on photoinduced phenomena that do not result from ultrafast heating effects.
We discuss a selection of recently discovered effects leveraging these mechanisms, as well as the technological advances that led to their discovery.
- Score: 2.0971479389679333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We review recent progress in utilizing ultrafast light-matter interaction to
control the macroscopic properties of quantum materials. Particular emphasis is
placed on photoinduced phenomena that do not result from ultrafast heating
effects but rather emerge from microscopic processes that are inherently
nonthermal in nature. Many of these processes can be described as transient
modifications to the free-energy landscape resulting from the redistribution of
quasiparticle populations, the dynamical modification of coupling strengths and
the resonant driving of the crystal lattice. Other pathways result from the
coherent dressing of a material's quantum states by the light field. We discuss
a selection of recently discovered effects leveraging these mechanisms, as well
as the technological advances that led to their discovery. A road map for how
the field can harness these nonthermal pathways to create new functionalities
is presented.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Strongly-Correlated Electron-Photon Systems [0.0]
We highlight a new paradigm, based on controlling light-matter interactions, which provides a new way to manipulate and synthesize strongly correlated quantum matter.
Photon-mediated superconductivity, cavity-fractional quantum Hall physics and optically driven topological phenomena are amongst the frontiers discussed in this perspective.
arXiv Detail & Related papers (2023-06-12T18:00:00Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Advances in ultrafast plasmonics [0.6020302526346242]
We review the current state and prospects of ultrafast phenomena driven by plasmons from a fundamental and applied point of view.
This research area is referred to as ultrafast plasmonics and represents an outstanding playground to tailor and control fast optical and electronic processes at the nanoscale.
Various directions are showcased, among others recent advances in ultrafast plasmon-driven chemistry and multi-functional plasmonics.
arXiv Detail & Related papers (2022-11-15T15:55:05Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Quantum control of solid-state qubits for thermodynamic applications [0.0]
We consider a single emitter of excitons driven by time-dependent laser fields.
We show that the form of the driving field can be tailored to produce different thermodynamic processes.
We discuss these effects from the perspective of quantum thermodynamics and outline the possibility of using them for optical cooling of solids to low temperatures.
arXiv Detail & Related papers (2021-03-24T11:17:24Z) - Superradiant detection of microscopic optical dipolar interactions [4.481048642352541]
We demonstrate a method to perform background-free'' detection of the microscopic optical dynamics in a laser-cooled atomic ensemble.
This is made possible by transiently suppressing the macroscopic optical propagation over a substantial time.
We apply this technique to unveil and precisely characterize a density-dependent, microscopic dipolar dephasing effect.
arXiv Detail & Related papers (2021-01-26T13:39:06Z) - Insights into photosynthetic energy transfer gained from free-energy
structure: Coherent transport, incoherent hopping, and vibrational assistance
revisited [0.0]
We revisit the elementary aspects of environment-induced fluctuations in the involved electronic energies.
We present a simple way to understand energy flow with the intuitive picture of relaxation in a funnel-type free-energy landscape.
arXiv Detail & Related papers (2020-11-01T12:51:13Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.