Neural-network quantum states for ultra-cold Fermi gases
- URL: http://arxiv.org/abs/2305.08831v1
- Date: Mon, 15 May 2023 17:46:09 GMT
- Title: Neural-network quantum states for ultra-cold Fermi gases
- Authors: Jane Kim, Gabriel Pescia, Bryce Fore, Jannes Nys, Giuseppe Carleo,
Stefano Gandolfi, Morten Hjorth-Jensen, Alessandro Lovato
- Abstract summary: This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
- Score: 49.725105678823915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultra-cold Fermi gases display diverse quantum mechanical properties,
including the transition from a fermionic superfluid BCS state to a bosonic
superfluid BEC state, which can be probed experimentally with high precision.
However, the theoretical description of these properties is challenging due to
the onset of strong pairing correlations and the non-perturbative nature of the
interaction among the constituent particles. This work introduces a novel
Pfaffian-Jastrow neural-network quantum state that includes backflow
transformation based on message-passing architecture to efficiently encode
pairing, and other quantum mechanical correlations. Our approach offers
substantial improvements over comparable ans\"atze constructed within the
Slater-Jastrow framework and outperforms state-of-the-art diffusion Monte Carlo
methods, as indicated by our lower ground-state energies. We observe the
emergence of strong pairing correlations through the opposite-spin pair
distribution functions. Moreover, we demonstrate that transfer learning
stabilizes and accelerates the training of the neural-network wave function,
enabling the exploration of the BCS-BEC crossover region near unitarity. Our
findings suggest that neural-network quantum states provide a promising
strategy for studying ultra-cold Fermi gases.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Entanglement Structure of Non-Gaussian States and How to Measure It [0.0]
We present a protocol that constrains quantum states by experimentally measured correlation functions.
This method enables measurement of a quantum state's entanglement structure.
We show the protocol's usefulness in conjunction with current and forthcoming experimental capabilities.
arXiv Detail & Related papers (2024-07-16T18:00:01Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Robustness of the projected squeezed state protocol [0.0]
Projected squeezed (PS) states are multipartite entangled states generated by unitary spin squeezing.
We simulate the generation of PS states in non-ideal experimental conditions with relevant decoherence channels.
Our findings highlight PS states as useful metrological resources, demonstrating a robustness against environmental effects with increasing qubit number N.
arXiv Detail & Related papers (2023-10-18T13:21:44Z) - A solid-state platform for cooperative quantum dynamics driven by correlated emission [3.609024579243597]
We set the stage for the -- yet uncharted -- exploration of analogous cooperative phenomena in hybrid solid-state platforms.
We develop a comprehensive formalism for the quantum many-body dynamics of an ensemble of solid-state spin defects interacting dissipatively with a common solid-state reservoir.
Our work lays the foundation for a multi-qubit approach to quantum sensing of solid-state systems and the direct generation of many-body entanglement in spin-defect ensembles.
arXiv Detail & Related papers (2023-09-16T13:12:42Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.