Improved Autoregressive Modeling with Distribution Smoothing
- URL: http://arxiv.org/abs/2103.15089v1
- Date: Sun, 28 Mar 2021 09:21:20 GMT
- Title: Improved Autoregressive Modeling with Distribution Smoothing
- Authors: Chenlin Meng, Jiaming Song, Yang Song, Shengjia Zhao, and Stefano
Ermon
- Abstract summary: Autoregressive models excel at image compression, but their sample quality is often lacking.
Inspired by a successful adversarial defense method, we incorporate randomized smoothing into autoregressive generative modeling.
- Score: 106.14646411432823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While autoregressive models excel at image compression, their sample quality
is often lacking. Although not realistic, generated images often have high
likelihood according to the model, resembling the case of adversarial examples.
Inspired by a successful adversarial defense method, we incorporate randomized
smoothing into autoregressive generative modeling. We first model a smoothed
version of the data distribution, and then reverse the smoothing process to
recover the original data distribution. This procedure drastically improves the
sample quality of existing autoregressive models on several synthetic and
real-world image datasets while obtaining competitive likelihoods on synthetic
datasets.
Related papers
- Towards Unsupervised Blind Face Restoration using Diffusion Prior [12.69610609088771]
Blind face restoration methods have shown remarkable performance when trained on large-scale synthetic datasets with supervised learning.
These datasets are often generated by simulating low-quality face images with a handcrafted image degradation pipeline.
In this paper, we address this issue by using only a set of input images, with unknown degradations and without ground truth targets, to fine-tune a restoration model.
Our best model also achieves the state-of-the-art results on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-10-06T20:38:14Z) - Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
We study the impact of data curation on iterated retraining of generative models.
We prove that, if the data is curated according to a reward model, the expected reward of the iterative retraining procedure is maximized.
arXiv Detail & Related papers (2024-06-12T21:28:28Z) - Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized
Control [54.132297393662654]
Diffusion models excel at capturing complex data distributions, such as those of natural images and proteins.
While diffusion models are trained to represent the distribution in the training dataset, we often are more concerned with other properties, such as the aesthetic quality of the generated images.
We present theoretical and empirical evidence that demonstrates our framework is capable of efficiently generating diverse samples with high genuine rewards.
arXiv Detail & Related papers (2024-02-23T08:54:42Z) - Large-scale Reinforcement Learning for Diffusion Models [30.164571425479824]
Text-to-image diffusion models are susceptible to implicit biases that arise from web-scale text-image training pairs.
We present an effective scalable algorithm to improve diffusion models using Reinforcement Learning (RL)
We show how our approach substantially outperforms existing methods for aligning diffusion models with human preferences.
arXiv Detail & Related papers (2024-01-20T08:10:43Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - DiVAE: Photorealistic Images Synthesis with Denoising Diffusion Decoder [73.1010640692609]
We propose a VQ-VAE architecture model with a diffusion decoder (DiVAE) to work as the reconstructing component in image synthesis.
Our model achieves state-of-the-art results and generates more photorealistic images specifically.
arXiv Detail & Related papers (2022-06-01T10:39:12Z) - Anytime Sampling for Autoregressive Models via Ordered Autoencoding [88.01906682843618]
Autoregressive models are widely used for tasks such as image and audio generation.
The sampling process of these models does not allow interruptions and cannot adapt to real-time computational resources.
We propose a new family of autoregressive models that enables anytime sampling.
arXiv Detail & Related papers (2021-02-23T05:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.