Towards Unsupervised Blind Face Restoration using Diffusion Prior
- URL: http://arxiv.org/abs/2410.04618v3
- Date: Sun, 24 Nov 2024 20:46:34 GMT
- Title: Towards Unsupervised Blind Face Restoration using Diffusion Prior
- Authors: Tianshu Kuai, Sina Honari, Igor Gilitschenski, Alex Levinshtein,
- Abstract summary: Blind face restoration methods have shown remarkable performance when trained on large-scale synthetic datasets with supervised learning.
These datasets are often generated by simulating low-quality face images with a handcrafted image degradation pipeline.
In this paper, we address this issue by using only a set of input images, with unknown degradations and without ground truth targets, to fine-tune a restoration model.
Our best model also achieves the state-of-the-art results on both synthetic and real-world datasets.
- Score: 12.69610609088771
- License:
- Abstract: Blind face restoration methods have shown remarkable performance, particularly when trained on large-scale synthetic datasets with supervised learning. These datasets are often generated by simulating low-quality face images with a handcrafted image degradation pipeline. The models trained on such synthetic degradations, however, cannot deal with inputs of unseen degradations. In this paper, we address this issue by using only a set of input images, with unknown degradations and without ground truth targets, to fine-tune a restoration model that learns to map them to clean and contextually consistent outputs. We utilize a pre-trained diffusion model as a generative prior through which we generate high quality images from the natural image distribution while maintaining the input image content through consistency constraints. These generated images are then used as pseudo targets to fine-tune a pre-trained restoration model. Unlike many recent approaches that employ diffusion models at test time, we only do so during training and thus maintain an efficient inference-time performance. Extensive experiments show that the proposed approach can consistently improve the perceptual quality of pre-trained blind face restoration models while maintaining great consistency with the input contents. Our best model also achieves the state-of-the-art results on both synthetic and real-world datasets.
Related papers
- Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
We propose a universal synthetic image detector Time Step Generating (TSG)
TSG does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms.
We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
arXiv Detail & Related papers (2024-11-17T09:39:50Z) - PrefPaint: Aligning Image Inpainting Diffusion Model with Human Preference [62.72779589895124]
We make the first attempt to align diffusion models for image inpainting with human aesthetic standards via a reinforcement learning framework.
We train a reward model with a dataset we construct, consisting of nearly 51,000 images annotated with human preferences.
Experiments on inpainting comparison and downstream tasks, such as image extension and 3D reconstruction, demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-10-29T11:49:39Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - Data Attribution for Text-to-Image Models by Unlearning Synthesized Images [71.23012718682634]
The goal of data attribution for text-to-image models is to identify the training images that most influence the generation of a new image.
We propose an efficient data attribution method by simulating unlearning the synthesized image.
We then identify training images with significant loss deviations after the unlearning process and label these as influential.
arXiv Detail & Related papers (2024-06-13T17:59:44Z) - Enhancing Consistency-Based Image Generation via Adversarialy-Trained Classification and Energy-Based Discrimination [13.238373528922194]
We propose a novel technique for post-processing Consistency-based generated images, enhancing their perceptual quality.
Our approach utilizes a joint classifier-discriminator model, in which both portions are trained adversarially.
By employing example-specific projected gradient under the guidance of this joint machine, we refine synthesized images and achieve an improved FID scores on the ImageNet 64x64 dataset.
arXiv Detail & Related papers (2024-05-25T14:53:52Z) - DepthFM: Fast Monocular Depth Estimation with Flow Matching [22.206355073676082]
Current discriminative depth estimation methods often produce blurry artifacts, while generative approaches suffer from slow sampling due to curvatures in the noise-to-depth transport.
Our method addresses these challenges by framing depth estimation as a direct transport between image and depth distributions.
Our approach achieves competitive zero-shot performance on standard benchmarks of complex natural scenes while improving sampling efficiency and only requiring minimal synthetic data for training.
arXiv Detail & Related papers (2024-03-20T17:51:53Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - Improved Autoregressive Modeling with Distribution Smoothing [106.14646411432823]
Autoregressive models excel at image compression, but their sample quality is often lacking.
Inspired by a successful adversarial defense method, we incorporate randomized smoothing into autoregressive generative modeling.
arXiv Detail & Related papers (2021-03-28T09:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.