論文の概要: Deep reinforcement learning of event-triggered communication and control
for multi-agent cooperative transport
- arxiv url: http://arxiv.org/abs/2103.15260v1
- Date: Mon, 29 Mar 2021 01:16:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 14:36:35.890785
- Title: Deep reinforcement learning of event-triggered communication and control
for multi-agent cooperative transport
- Title(参考訳): イベントトリガー通信の深部強化学習とマルチエージェント協調輸送の制御
- Authors: Kazuki Shibata, Tomohiko Jimbo and Takamitsu Matsubara
- Abstract要約: 協調輸送のためのコミュニケーション・制御戦略の設計問題に対処する多エージェント強化学習手法を検討する。
我々のフレームワークはイベントトリガーアーキテクチャ、すなわち通信入力を演算するフィードバックコントローラと、入力を再更新する必要があるタイミングを決定するトリガー機構を利用する。
- 参考スコア(独自算出の注目度): 9.891241465396098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore a multi-agent reinforcement learning approach to
address the design problem of communication and control strategies for
multi-agent cooperative transport. Typical end-to-end deep neural network
policies may be insufficient for covering communication and control; these
methods cannot decide the timing of communication and can only work with
fixed-rate communications. Therefore, our framework exploits event-triggered
architecture, namely, a feedback controller that computes the communication
input and a triggering mechanism that determines when the input has to be
updated again. Such event-triggered control policies are efficiently optimized
using a multi-agent deep deterministic policy gradient. We confirmed that our
approach could balance the transport performance and communication savings
through numerical simulations.
- Abstract(参考訳): 本稿では,多エージェント協調輸送におけるコミュニケーションおよび制御戦略の設計問題に対処する多エージェント強化学習手法を提案する。
一般的なエンドツーエンドのディープニューラルネットワークポリシは、通信と制御をカバーするために不十分な場合がある。
そこで,本フレームワークはイベントトリガーアーキテクチャ,すなわち,通信入力を演算するフィードバックコントローラと,入力を再更新する必要があるタイミングを決定するトリガー機構を利用する。
このようなイベントトリガー制御ポリシーは、マルチエージェントの深い決定論的ポリシー勾配を用いて効率的に最適化される。
数値シミュレーションにより,輸送性能と通信省力のバランスがとれることを確認した。
関連論文リスト
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Effective Communication with Dynamic Feature Compression [25.150266946722]
本研究では,タスクを制御するロボットに対して,観察者が知覚データを伝達しなければならないプロトタイパルシステムについて検討する。
本稿では, 量子化レベルを動的に適応させるために, アンサンブルベクトル量子化変分オートエンコーダ(VQ-VAE)を符号化し, 深層強化学習(DRL)エージェントを訓練する。
我々は、よく知られたCartPole参照制御問題に対して提案手法を検証し、大幅な性能向上を得た。
論文 参考訳(メタデータ) (2024-01-29T15:35:05Z) - Emergent Communication Protocol Learning for Task Offloading in
Industrial Internet of Things [30.146175299047325]
計算のオフロード決定とマルチチャネルアクセスポリシーを対応するシグナリングで学習する。
具体的には、基地局と産業用IoTモバイルデバイスは強化学習エージェントである。
この問題を解決するために,創発的な通信プロトコル学習フレームワークを採用する。
論文 参考訳(メタデータ) (2024-01-23T17:06:13Z) - Will 6G be Semantic Communications? Opportunities and Challenges from
Task Oriented and Secure Communications to Integrated Sensing [49.83882366499547]
本稿では,マルチタスク学習を統合した次世代(NextG)ネットワークにおけるタスク指向およびセマンティックコミュニケーションの機会と課題について検討する。
我々は、送信側の専用エンコーダと受信側の複数のタスク固有のデコーダを表すディープニューラルネットワークを用いる。
トレーニングとテストの段階において、敵対的攻撃に起因する潜在的な脆弱性を精査する。
論文 参考訳(メタデータ) (2024-01-03T04:01:20Z) - Multi-Agent Reinforcement Learning for Pragmatic Communication and
Control [40.11766545693947]
本稿では,目標指向通信とネットワーク制御を組み合わせた統合設計を単一最適化モデルとして提案する。
通信システムと制御システムの合同訓練は、全体的な性能を著しく向上させることができる。
論文 参考訳(メタデータ) (2023-02-28T08:30:24Z) - Semantic and Effective Communication for Remote Control Tasks with
Dynamic Feature Compression [23.36744348465991]
ロボットの群れの調整と産業システムのリモート無線制御は、5Gおよびそれ以上のシステムの主要なユースケースである。
本研究では,タスクを制御するアクターに知覚データを伝達しなければならないプロトタイパルシステムについて考察する。
本稿では,量子化レベルを動的に適応させるために,アンサンブルベクトル量子化変分オートエンコーダ(VQ-VAE)を符号化し,深層強化学習(DRL)エージェントを訓練する。
論文 参考訳(メタデータ) (2023-01-14T11:43:56Z) - Accelerating Federated Edge Learning via Optimized Probabilistic Device
Scheduling [57.271494741212166]
本稿では,通信時間最小化問題を定式化し,解決する。
最適化されたポリシーは、トレーニングプロセスが進むにつれて、残りの通信ラウンドの抑制から、ラウンドごとのレイテンシの低減へと、徐々に優先順位を転換している。
提案手法の有効性は,自律運転における協調的3次元目標検出のユースケースを通じて実証される。
論文 参考訳(メタデータ) (2021-07-24T11:39:17Z) - Adversarial Attacks On Multi-Agent Communication [80.4392160849506]
現代の自律システムはすぐに大規模に展開され、協調型マルチエージェントシステムの可能性を広げる。
このような利点は、セキュリティ侵害に対して脆弱であることが示されている通信チャネルに大きく依存している。
本稿では,エージェントが学習した中間表現を共有してコミュニケーションする新しいマルチエージェント環境において,このような攻撃を探索する。
論文 参考訳(メタデータ) (2021-01-17T00:35:26Z) - Learning Event-triggered Control from Data through Joint Optimization [7.391641422048646]
イベントトリガー制御戦略のモデルフリー学習のためのフレームワークを提案する。
階層的強化学習に基づく新しいアルゴリズムを提案する。
得られたアルゴリズムは, 資源の節約や非線形・高次元システムへのシームレスなスケールで, 高性能な制御を実現する。
論文 参考訳(メタデータ) (2020-08-11T14:15:38Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
本研究では,マルチエージェント強化学習(MARL)環境下での大規模マルチエージェント通信機構について検討する。
本稿では、より柔軟で効率的な通信トポロジを用いて、LSC(Learning Structured Communication)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-11T07:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。