Changing the Mind of Transformers for Topically-Controllable Language
Generation
- URL: http://arxiv.org/abs/2103.15335v1
- Date: Mon, 29 Mar 2021 05:02:25 GMT
- Title: Changing the Mind of Transformers for Topically-Controllable Language
Generation
- Authors: Haw-Shiuan Chang, Jiaming Yuan, Mohit Iyyer, Andrew McCallum
- Abstract summary: We design a framework that displays multiple candidate upcoming topics, of which a user can select a subset to guide the generation.
Our framework consists of two components: (1) a method that produces a set of candidate topics by predicting the centers of word clusters in the possible continuations, and (2) a text generation model whose output adheres to the chosen topics.
Our experiments demonstrate that our topic options are better than those of standard clustering approaches, and our framework often generates fluent sentences related to the chosen topics.
- Score: 48.370742117330764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Transformer-based language models can aid human authors by suggesting
plausible continuations of text written so far. However, current interactive
writing assistants do not allow authors to guide text generation in desired
topical directions. To address this limitation, we design a framework that
displays multiple candidate upcoming topics, of which a user can select a
subset to guide the generation. Our framework consists of two components: (1) a
method that produces a set of candidate topics by predicting the centers of
word clusters in the possible continuations, and (2) a text generation model
whose output adheres to the chosen topics. The training of both components is
self-supervised, using only unlabeled text. Our experiments demonstrate that
our topic options are better than those of standard clustering approaches, and
our framework often generates fluent sentences related to the chosen topics, as
judged by automated metrics and crowdsourced workers.
Related papers
- Instruct-SCTG: Guiding Sequential Controlled Text Generation through
Instructions [42.67608830386934]
Instruct-SCTG is a sequential framework that harnesses instruction-tuned language models to generate structurally coherent text.
Our framework generates articles in a section-by-section manner, aligned with the desired human structure using natural language instructions.
arXiv Detail & Related papers (2023-12-19T16:20:49Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - Explicit Syntactic Guidance for Neural Text Generation [45.60838824233036]
Generative Grammar suggests that humans generate natural language texts by learning language grammar.
We propose a syntax-guided generation schema, which generates the sequence guided by a constituency parse tree in a top-down direction.
Experiments on paraphrase generation and machine translation show that the proposed method outperforms autoregressive baselines.
arXiv Detail & Related papers (2023-06-20T12:16:31Z) - The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
We describe a hybrid architecture for dialogue response generation that combines the strengths of neural language modeling and rule-based generation.
Our experiments show that this system outperforms both rule-based and learned approaches in human evaluations of fluency, relevance, and truthfulness.
arXiv Detail & Related papers (2022-09-16T09:00:49Z) - Collocation2Text: Controllable Text Generation from Guide Phrases in
Russian [0.0]
Collocation2Text is a plug-and-play method for automatic controllable text generation in Russian.
The method is based on two interacting models: the autoregressive language ruGPT-3 model and the autoencoding language ruRoBERTa model.
Experiments on generating news articles using the proposed method showed its effectiveness for automatically generated fluent texts.
arXiv Detail & Related papers (2022-06-18T17:10:08Z) - Event Transition Planning for Open-ended Text Generation [55.729259805477376]
Open-ended text generation tasks require models to generate a coherent continuation given limited preceding context.
We propose a novel two-stage method which explicitly arranges the ensuing events in open-ended text generation.
Our approach can be understood as a specially-trained coarse-to-fine algorithm.
arXiv Detail & Related papers (2022-04-20T13:37:51Z) - ConRPG: Paraphrase Generation using Contexts as Regularizer [31.967883219986362]
A long-standing issue with paraphrase generation is how to obtain reliable supervision signals.
We propose an unsupervised paradigm for paraphrase generation based on the assumption that the probabilities of generating two sentences with the same meaning given the same context should be the same.
We propose a pipelined system which consists of paraphrase candidate generation based on contextual language models, candidate filtering using scoring functions, and paraphrase model training based on the selected candidates.
arXiv Detail & Related papers (2021-09-01T12:57:30Z) - Automatic Document Sketching: Generating Drafts from Analogous Texts [44.626645471195495]
We introduce a new task, document sketching, which involves generating entire draft documents for the writer to review and revise.
These drafts are built from sets of documents that overlap in form - sharing large segments of potentially reusable text - while diverging in content.
We investigate the application of weakly supervised methods, including use of a transformer-based mixture of experts, together with reinforcement learning.
arXiv Detail & Related papers (2021-06-14T06:46:06Z) - StylePTB: A Compositional Benchmark for Fine-grained Controllable Text
Style Transfer [90.6768813620898]
Style transfer aims to controllably generate text with targeted stylistic changes while maintaining core meaning from the source sentence constant.
We introduce a large-scale benchmark, StylePTB, with paired sentences undergoing 21 fine-grained stylistic changes spanning atomic lexical, syntactic, semantic, and thematic transfers of text.
We find that existing methods on StylePTB struggle to model fine-grained changes and have an even more difficult time composing multiple styles.
arXiv Detail & Related papers (2021-04-12T04:25:09Z) - Text Editing by Command [82.50904226312451]
A prevailing paradigm in neural text generation is one-shot generation, where text is produced in a single step.
We address this limitation with an interactive text generation setting in which the user interacts with the system by issuing commands to edit existing text.
We show that our Interactive Editor, a transformer-based model trained on this dataset, outperforms baselines and obtains positive results in both automatic and human evaluations.
arXiv Detail & Related papers (2020-10-24T08:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.