Instruct-SCTG: Guiding Sequential Controlled Text Generation through
Instructions
- URL: http://arxiv.org/abs/2312.12299v1
- Date: Tue, 19 Dec 2023 16:20:49 GMT
- Title: Instruct-SCTG: Guiding Sequential Controlled Text Generation through
Instructions
- Authors: Yinhong Liu, Yixuan Su, Ehsan Shareghi and Nigel Collier
- Abstract summary: Instruct-SCTG is a sequential framework that harnesses instruction-tuned language models to generate structurally coherent text.
Our framework generates articles in a section-by-section manner, aligned with the desired human structure using natural language instructions.
- Score: 42.67608830386934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction-tuned large language models have shown remarkable performance in
aligning generated text with user intentions across various tasks. However,
maintaining human-like discourse structure in the generated text remains a
challenging research question. In this paper, we propose Instruct-SCTG, a
flexible and effective sequential framework that harnesses instruction-tuned
language models to generate structurally coherent text in both fine-tuned and
zero-shot setups. Our framework generates articles in a section-by-section
manner, aligned with the desired human structure using natural language
instructions. Furthermore, we introduce a new automatic metric that measures
discourse divergence in a fuzzy manner. Extensive experiments on three datasets
from representative domains of news and recipes demonstrate the
state-of-the-art performance of our framework in imposing discourse structure
during text generation, as verified by both automatic and human evaluation. Our
code will be available on Github.
Related papers
- Efficient Guided Generation for Large Language Models [0.21485350418225244]
We show how the problem of neural text generation can be constructively reformulated in terms of transitions between the states of a finite-state machine.
This framework leads to an efficient approach to guiding text generation with regular expressions and context-free grammars.
arXiv Detail & Related papers (2023-07-19T01:14:49Z) - Explicit Syntactic Guidance for Neural Text Generation [45.60838824233036]
Generative Grammar suggests that humans generate natural language texts by learning language grammar.
We propose a syntax-guided generation schema, which generates the sequence guided by a constituency parse tree in a top-down direction.
Experiments on paraphrase generation and machine translation show that the proposed method outperforms autoregressive baselines.
arXiv Detail & Related papers (2023-06-20T12:16:31Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
We propose TextFormer, a query-based end-to-end text spotter with Transformer architecture.
TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling.
It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing.
arXiv Detail & Related papers (2023-06-06T03:37:41Z) - Sequentially Controlled Text Generation [97.22539956688443]
GPT-2 generates sentences that are remarkably human-like, longer documents can ramble and do not follow human-like writing structure.
We study the problem of imposing structure on long-range text.
We develop a sequential controlled text generation pipeline with generation and editing.
arXiv Detail & Related papers (2023-01-05T21:23:51Z) - RSTGen: Imbuing Fine-Grained Interpretable Control into Long-FormText
Generators [26.27412809287025]
RSTGen is a framework that controls the discourse structure, semantics and topics of generated text.
We demonstrate our model's ability to control structural discourse and semantic features of generated text in open generation evaluation.
arXiv Detail & Related papers (2022-05-25T09:06:04Z) - Attend, Memorize and Generate: Towards Faithful Table-to-Text Generation
in Few Shots [58.404516361586325]
Few-shot table-to-text generation is a task of composing fluent and faithful sentences to convey table content using limited data.
This paper proposes a novel approach, Memorize and Generate (called AMG), inspired by the text generation process of humans.
arXiv Detail & Related papers (2022-03-01T20:37:20Z) - Long Text Generation by Modeling Sentence-Level and Discourse-Level
Coherence [59.51720326054546]
We propose a long text generation model, which can represent the prefix sentences at sentence level and discourse level in the decoding process.
Our model can generate more coherent texts than state-of-the-art baselines.
arXiv Detail & Related papers (2021-05-19T07:29:08Z) - Exemplar-Controllable Paraphrasing and Translation using Bitext [57.92051459102902]
We adapt models from prior work to be able to learn solely from bilingual text (bitext)
Our single proposed model can perform four tasks: controlled paraphrase generation in both languages and controlled machine translation in both language directions.
arXiv Detail & Related papers (2020-10-12T17:02:50Z) - Syntax-driven Iterative Expansion Language Models for Controllable Text
Generation [2.578242050187029]
We propose a new paradigm for introducing a syntactic inductive bias into neural text generation.
Our experiments show that this paradigm is effective at text generation, with quality between LSTMs and Transformers, and comparable diversity.
arXiv Detail & Related papers (2020-04-05T14:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.