論文の概要: Lagrangian Objective Function Leads to Improved Unforeseen Attack
Generalization in Adversarial Training
- arxiv url: http://arxiv.org/abs/2103.15385v1
- Date: Mon, 29 Mar 2021 07:23:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 02:32:33.213482
- Title: Lagrangian Objective Function Leads to Improved Unforeseen Attack
Generalization in Adversarial Training
- Title(参考訳): ラグランジアン目的関数は、対人訓練における予期せぬ攻撃一般化の改善につながる
- Authors: Mohammad Azizmalayeri, Mohammad Hossein Rohban
- Abstract要約: 対人訓練(AT)は、訓練中に使用される攻撃に対して堅牢なモデルに到達するのに有効であることが示されている。
我々は、上記の問題を緩和する簡易なAT修正を提案する。
我々は,攻撃の一般化を意図した他の攻撃手法よりも,攻撃速度が速いことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent improvements in deep learning models and their practical applications
have raised concerns about the robustness of these models against adversarial
examples. Adversarial training (AT) has been shown effective to reach a robust
model against the attack that is used during training. However, it usually
fails against other attacks, i.e. the model overfits to the training attack
scheme. In this paper, we propose a simple modification to the AT that
mitigates the mentioned issue. More specifically, we minimize the perturbation
$\ell_p$ norm while maximizing the classification loss in the Lagrangian form.
We argue that crafting adversarial examples based on this scheme results in
enhanced attack generalization in the learned model. We compare our final model
robust accuracy against attacks that were not used during training to closely
related state-of-the-art AT methods. This comparison demonstrates that our
average robust accuracy against unseen attacks is 5.9% higher in the CIFAR-10
dataset and is 3.2% higher in the ImageNet-100 dataset than corresponding
state-of-the-art methods. We also demonstrate that our attack is faster than
other attack schemes that are designed for unseen attack generalization, and
conclude that it is feasible for large-scale datasets.
- Abstract(参考訳): ディープラーニングモデルの最近の改善とその実用的応用は、これらのモデルの敵対的な例に対する堅牢性に関する懸念を提起している。
対人訓練(AT)は、訓練中に使用される攻撃に対して堅牢なモデルに到達するのに有効であることが示されている。
しかし、通常は他の攻撃、すなわち攻撃に失敗する。
モデルは、トレーニングアタックスキームにオーバーフィットします。
本稿では,上記の問題を緩和する at の簡単な修正を提案する。
具体的には、ラグランジュ形式の分類損失を最大化しながら、摂動$\ell_p$ノルムを最小化する。
このスキームに基づく対角的例の製作は、学習モデルにおける攻撃一般化の強化をもたらすと論じる。
最終モデルのロバストな精度を,トレーニング中に使用しなかった攻撃と,関連する最先端のメソッドと比較した。
この比較の結果,cifar-10データセットでは平均的ロバスト精度が5.9%,imagenet-100データセットでは3.2%であった。
また,我々の攻撃は,未発見の攻撃一般化のために設計された他の攻撃スキームよりも高速であることを示し,大規模データセットでは実現可能であると結論付ける。
関連論文リスト
- Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - Transferable Attack for Semantic Segmentation [59.17710830038692]
敵が攻撃し、ソースモデルから生成された敵の例がターゲットモデルを攻撃するのに失敗するのを観察します。
本研究では, セマンティックセグメンテーションのためのアンサンブルアタックを提案する。
論文 参考訳(メタデータ) (2023-07-31T11:05:55Z) - MORA: Improving Ensemble Robustness Evaluation with Model-Reweighing
Attack [26.37741124166643]
敵攻撃は、入力データに小さな摂動を加えることで、ニューラルネットワークを騙すことができる。
敵の攻撃戦略は、アンサンブル防御を確実に評価することができず、その頑健さをかなり過大評価できることを示す。
我々は, モデル勾配の重要性を再考することにより, モデル修正攻撃であるMORAを紹介した。
論文 参考訳(メタデータ) (2022-11-15T09:45:32Z) - Fast Adversarial Training with Adaptive Step Size [62.37203478589929]
トレーニングインスタンスの観点から,この現象を考察する。
適応ステップサイズ(ATAS)を用いた逆学習法を提案する。
ATASは、その勾配ノルムに逆比例するインスタンス順応的なステップサイズを学習する。
論文 参考訳(メタデータ) (2022-06-06T08:20:07Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Optimal Transport as a Defense Against Adversarial Attacks [4.6193503399184275]
敵対的攻撃は、訓練されたモデルを誤解させる画像に対して、人間の知覚できない摂動を見つけることができる。
従来の研究は、原画像と敵対画像の整合性をドメイン適応と同等に調整し、堅牢性を向上させることを目的としていた。
地上距離を忠実に反映した分布間の損失を用いることを提案する。
これによりSAT (Sinkhorn Adversarial Training) は敵の攻撃に対してより堅牢な防衛を行う。
論文 参考訳(メタデータ) (2021-02-05T13:24:36Z) - Untargeted, Targeted and Universal Adversarial Attacks and Defenses on
Time Series [0.0]
我々は,UCR時系列データセットに対して,対象外,対象外,普遍的敵攻撃を行った。
これらの攻撃に対して,ディープラーニングに基づく時系列分類モデルが脆弱であることを示す。
また、トレーニングデータのごく一部しか必要としないため、普遍的敵攻撃は優れた一般化特性を有することを示す。
論文 参考訳(メタデータ) (2021-01-13T13:00:51Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。