ClaRe: Practical Class Incremental Learning By Remembering Previous
Class Representations
- URL: http://arxiv.org/abs/2103.15486v1
- Date: Mon, 29 Mar 2021 10:39:42 GMT
- Title: ClaRe: Practical Class Incremental Learning By Remembering Previous
Class Representations
- Authors: Bahram Mohammadi and Mohammad Sabokrou
- Abstract summary: Class Incremental Learning (CIL) tends to learn new concepts perfectly, but not at the expense of performance and accuracy for old data.
ClaRe is an efficient solution for CIL by remembering the representations of learned classes in each increment.
ClaRe has a better generalization than prior methods thanks to producing diverse instances from the distribution of previously learned classes.
- Score: 9.530976792843495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a practical and simple yet efficient method to
effectively deal with the catastrophic forgetting for Class Incremental
Learning (CIL) tasks. CIL tends to learn new concepts perfectly, but not at the
expense of performance and accuracy for old data. Learning new knowledge in the
absence of data instances from previous classes or even imbalance samples of
both old and new classes makes CIL an ongoing challenging problem. These issues
can be tackled by storing exemplars belonging to the previous tasks or by
utilizing the rehearsal strategy. Inspired by the rehearsal strategy with the
approach of using generative models, we propose ClaRe, an efficient solution
for CIL by remembering the representations of learned classes in each
increment. Taking this approach leads to generating instances with the same
distribution of the learned classes. Hence, our model is somehow retrained from
the scratch using a new training set including both new and the generated
samples. Subsequently, the imbalance data problem is also solved. ClaRe has a
better generalization than prior methods thanks to producing diverse instances
from the distribution of previously learned classes. We comprehensively
evaluate ClaRe on the MNIST benchmark. Results show a very low degradation on
accuracy against facing new knowledge over time. Furthermore, contrary to the
most proposed solutions, the memory limitation is not problematic any longer
which is considered as a consequential issue in this research area.
Related papers
- Happy: A Debiased Learning Framework for Continual Generalized Category Discovery [54.54153155039062]
This paper explores the underexplored task of Continual Generalized Category Discovery (C-GCD)
C-GCD aims to incrementally discover new classes from unlabeled data while maintaining the ability to recognize previously learned classes.
We introduce a debiased learning framework, namely Happy, characterized by Hardness-aware prototype sampling and soft entropy regularization.
arXiv Detail & Related papers (2024-10-09T04:18:51Z) - PASS++: A Dual Bias Reduction Framework for Non-Exemplar Class-Incremental Learning [49.240408681098906]
Class-incremental learning (CIL) aims to recognize new classes incrementally while maintaining the discriminability of old classes.
Most existing CIL methods are exemplar-based, i.e., storing a part of old data for retraining.
We present a simple and novel dual bias reduction framework that employs self-supervised transformation (SST) in input space and prototype augmentation (protoAug) in deep feature space.
arXiv Detail & Related papers (2024-07-19T05:03:16Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Class-Incremental Learning: A Survey [84.30083092434938]
Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally.
CIL tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades.
We provide a rigorous and unified evaluation of 17 methods in benchmark image classification tasks to find out the characteristics of different algorithms.
arXiv Detail & Related papers (2023-02-07T17:59:05Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Multi-Granularity Regularized Re-Balancing for Class Incremental
Learning [32.52884416761171]
Deep learning models suffer from catastrophic forgetting when learning new tasks.
Data imbalance between old and new classes is a key issue that leads to performance degradation of the model.
We propose an assumption-agnostic method, Multi-Granularity Regularized re-Balancing, to address this problem.
arXiv Detail & Related papers (2022-06-30T11:04:51Z) - Queried Unlabeled Data Improves and Robustifies Class-Incremental
Learning [133.39254981496146]
Class-incremental learning (CIL) suffers from the notorious dilemma between learning newly added classes and preserving previously learned class knowledge.
We propose to leverage "free" external unlabeled data querying in continual learning.
We show queried unlabeled data can continue to benefit, and seamlessly extend CIL-QUD into its robustified versions.
arXiv Detail & Related papers (2022-06-15T22:53:23Z) - Class-Incremental Learning with Generative Classifiers [6.570917734205559]
We propose a new strategy for class-incremental learning: generative classification.
Our proposal is to learn the joint distribution p(x,y), factorized as p(x|y)p(y), and to perform classification using Bayes' rule.
As a proof-of-principle, here we implement this strategy by training a variational autoencoder for each class to be learned.
arXiv Detail & Related papers (2021-04-20T16:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.