Controlled multi-photon subtraction with cascaded Rydberg superatoms as
single-photon absorbers
- URL: http://arxiv.org/abs/2103.15738v1
- Date: Mon, 29 Mar 2021 16:24:02 GMT
- Title: Controlled multi-photon subtraction with cascaded Rydberg superatoms as
single-photon absorbers
- Authors: Nina Stiesdal, Hannes Busche, Kevin Kleinbeck, Jan Kumlin, Mikkel G.
Hansen, Hans Peter B\"uchler, Sebastian Hofferberth
- Abstract summary: We demonstrate exact and controlled multi-photon subtraction from incoming light pulses.
We employ a cascaded system of tightly confined cold atom ensembles with strong, collectively enhanced coupling of photons to Rydberg states.
We show that our scheme should scale well to higher absorber numbers if the Raman decay can be further suppressed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The preparation of light pulses with well-defined quantum properties requires
precise control at the individual photon level. Here, we demonstrate exact and
controlled multi-photon subtraction from incoming light pulses. We employ a
cascaded system of tightly confined cold atom ensembles with strong,
collectively enhanced coupling of photons to Rydberg states. The excitation
blockade resulting from interactions between Rydberg atoms limits photon
absorption to one per ensemble and engineered dephasing of the collective
excitation suppresses stimulated re-emission of the photon. We experimentally
demonstrate subtraction with up to three absorbers. Furthermore, we present a
thorough theoretical analysis of our scheme where we identify weak Raman decay
of the long-lived Rydberg state as the main source of infidelity in the
subtracted photon number. We show that our scheme should scale well to higher
absorber numbers if the Raman decay can be further suppressed.
Related papers
- Coherence in resonance fluorescence [12.793630118234434]
Resonance fluorescence (RF) of a two-level emitter displays persistently anti-bunching irrespective of the excitation intensity.
Recent theory attributes anti-bunching to the laser-like spectrum's interference with the incoherently scattered light.
arXiv Detail & Related papers (2023-12-21T11:25:31Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Analyzing the collective emission of a Rydberg-blockaded single-photon
source based on an ensemble of thermal atoms [0.0]
We numerically study the feasibility of a single-photon source in a hot vapor of Rubidium atoms in a micro cell.
For the excitation process with three rectangular lasers pulses, we simulate the coherent dynamics of the system in a truncated Hilbert space.
We find that the collective decay of the single-excitation leads to a fast and directed photon emission and further, that a pulse sequence similar to a spin echo increases the directionality of the photon.
arXiv Detail & Related papers (2023-03-07T14:43:27Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Correlations between cascaded photons from spatially localized
biexcitons in ZnSe [55.41644538483948]
We demonstrate a radiative cascade from the decay of a biexciton at an impurity-atom complex in aSe quantum well.
Our result establishes impurity atoms inSe as a potential platform for photonic quantum technologies using radiative cascades.
arXiv Detail & Related papers (2022-03-11T23:15:37Z) - Entangled photons from composite cascade emitters [0.0]
Entangled photons are crucial for quantum technologies.
generating arbitrary entangled photon states deterministically, efficiently, and with high fidelity remains a challenge.
arXiv Detail & Related papers (2021-10-23T00:30:34Z) - Transient dynamics of the quantum light retrieved from Rydberg
polaritons [0.0]
We show that the value of the second-order autocorrelation function of the transmitted light strongly depends on the position within the pulse.
We derive a theoretical model that quantitatively predicts our results and explains the physical behavior involved.
We show that by selecting only the last part of the transmitted pulse, the single photons show an antibunching parameter as low as 0.12 and a generation efficiency per trial larger than possible.
arXiv Detail & Related papers (2020-11-25T08:51:24Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Atom-Photon Spin-Exchange Collisions Mediated by Rydberg Dressing [11.207403145794927]
We show that photons propagating through a Rydberg-dressed atomic ensemble can exchange its spin state with a single atom.
Such a spin-exchange collision exhibits both dissipative and coherent features, depending on the interaction strength.
arXiv Detail & Related papers (2020-03-19T12:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.