Coherence in resonance fluorescence
- URL: http://arxiv.org/abs/2312.13743v3
- Date: Fri, 31 May 2024 01:23:00 GMT
- Title: Coherence in resonance fluorescence
- Authors: Xu-Jie Wang, Guoqi Huang, Ming-Yang Li, Yuan-Zhuo Wang, Li Liu, Bang Wu, Hanqing Liu, Haiqiao Ni, Zhichuan Niu, Weijie Ji, Rongzhen Jiao, Hua-Lei Yin, Zhiliang Yuan,
- Abstract summary: Resonance fluorescence (RF) of a two-level emitter displays persistently anti-bunching irrespective of the excitation intensity.
Recent theory attributes anti-bunching to the laser-like spectrum's interference with the incoherently scattered light.
- Score: 12.793630118234434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resonance fluorescence (RF) of a two-level emitter displays persistently anti-bunching irrespective of the excitation intensity, but inherits the driving laser's linewidth under weak excitation. These properties are commonly explained disjoinedly as the emitter's single photon saturation or passively scattering light, until a recent theory attributes anti-bunching to the laser-like spectrum's interference with the incoherently scattered light. However, the theory implies higher-order scattering processes, and led to an experiment purporting to validate an atom's simultaneous scattering of two photons. If true, it could complicate RF's prospects in quantum information applications. Here, we propose a unified model that treats all RF photons as spontaneous emission, one at a time, and can explain simultaneously both the RF's spectral and correlation properties. We theoretically derive the excitation power dependencies, with the strongest effects measurable at the single-photon incidence level, of the first-order coherence of the whole RF and super-bunching of the spectrally filtered, followed by experimental confirmation on a semiconductor quantum dot micro-pillar device. Furthermore, our model explains peculiar coincidence bunching observed in phase-dependent two-photon interference experiments. Our work provides novel understandings of coherent light-matter interaction and may stimulate new applications.
Related papers
- Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Probing many-body correlations using quantum-cascade correlation
spectroscopy [0.0]
The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics.
Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved.
Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength.
arXiv Detail & Related papers (2022-12-18T09:51:12Z) - Two-photon emission in detuned resonance fluorescence [0.0]
We discuss two-photon correlations from the side peaks that are formed when a two-level system emitter is driven coherently.
We show that their combination leads to a neat picture compatible with perturbative two-photon scattering.
This should help to control, enhance and open new regimes of multiphoton emission.
arXiv Detail & Related papers (2022-10-07T17:59:38Z) - Will a single two-level atom simultaneously scatter two photons? [2.9785870773347645]
Two photons are never detected simultaneously in the light scattered by the emitter.
This is commonly interpreted by saying that a single two-level quantum emitter can only absorb and emit single photons.
Our results offer fundamental insights into the quantum-mechanical interaction between light and matter.
arXiv Detail & Related papers (2022-09-06T14:56:36Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - The Origin of Antibunching in Resonance Fluorescence [0.0]
Epitaxial quantum dots have emerged as one of the best single-photon sources.
One intriguing observation is the scattering of photons with subnatural linewidth from a two-level system.
Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation.
arXiv Detail & Related papers (2020-05-24T16:48:33Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.