Surface NMR using quantum sensors in diamond
- URL: http://arxiv.org/abs/2103.15955v1
- Date: Mon, 29 Mar 2021 21:12:38 GMT
- Title: Surface NMR using quantum sensors in diamond
- Authors: Kristina S. Liu, Alex Henning, Markus W. Heindl, Robin D. Allert,
Johannes D. Bartl, Ian D. Sharp, Roberto Rizzato, Dominik B. Bucher
- Abstract summary: Nuclear magnetic resonance spectroscopy (NMR) is a widely used technique and would be ideal for probing interfaces due to the molecular information it provides noninvasively.
Here, we use nitrogen vacancy (NV) centers in diamond as quantum sensors to optically detect nuclear magnetic resonance signals from chemically modified aluminum oxide surfaces.
This demonstrates the capability of quantum sensors as a new surface-sensitive tool with sub-monolayer sensitivity for in-situ NMR analysis with the additional advantage of a strongly reduced technical complexity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Characterization of the molecular properties of surfaces under ambient or
chemically reactive conditions is a fundamental scientific challenge. Moreover,
many traditional analytical techniques used for probing surfaces often lack
dynamic or molecular selectivity, which limits their applicability for
mechanistic and kinetic studies under realistic chemical conditions. Nuclear
magnetic resonance spectroscopy (NMR) is a widely used technique and would be
ideal for probing interfaces due to the molecular information it provides
noninvasively. However, it lacks the sensitivity to probe the small number of
spins at surfaces. Here, we use nitrogen vacancy (NV) centers in diamond as
quantum sensors to optically detect nuclear magnetic resonance signals from
chemically modified aluminum oxide surfaces, prepared with atomic layer
deposition (ALD). With the surface NV-NMR technique, we are able to monitor in
real-time the formation kinetics of a self assembled monolayer (SAM) based on
phosphonate anchoring chemistry to the surface. This demonstrates the
capability of quantum sensors as a new surface-sensitive tool with
sub-monolayer sensitivity for in-situ NMR analysis with the additional
advantage of a strongly reduced technical complexity.
Related papers
- All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Diamond surface engineering for molecular sensing with nitrogen-vacancy
centers [0.0]
Quantum sensing using optically addressable atomic-scale defects, such as the nitrogen--vacancy center in diamond, provides new opportunities for sensitive and highly localized characterization of chemical functionality.
This Review provides a survey of the rapidly converging fields of diamond surface science and NV-center physics, highlighting their combined potential for quantum sensing of molecules.
arXiv Detail & Related papers (2022-07-15T14:46:24Z) - Advances in nano- and microscale NMR spectroscopy using diamond quantum
sensors [0.0]
Quantum technologies have seen a rapid developmental surge over the last couple of years.
One system stands out in particular: the nitrogen-vacancy center in diamond, an atomic-sized sensor allowing the detection of nuclear magnetic resonance (NMR) signals at unprecedented length scales down to a single proton.
arXiv Detail & Related papers (2022-05-24T16:22:11Z) - Developing a Chemical and Structural Understanding of the Surface Oxide
in a Niobium Superconducting Qubit [46.6940373636939]
We conduct a detailed assessment of the surface oxide that forms in ambient conditions for transmon test devices patterned from a niobium film.
In terms of structural analysis, we find that the Nb$ 1-2$O$_5$ region is semicrystalline in nature.
We observe that amorphous regions are more likely to contain oxygen vacancies and exhibit weaker bonds between the niobium and oxygen atoms.
arXiv Detail & Related papers (2022-03-16T16:00:57Z) - Nanodiamonds based optical-fiber quantum probe for magnetic field and
biological sensing [6.643766442180283]
In this work, a miniature optical-fiber quantum probe, configured by chemically-modifying nanodiamonds NV centers, is developed.
The magnetic field detection sensitivity of the probe is significantly enhanced to 0.57 nT/Hz1/2 @ 1Hz, a new record among the fiber magnetometers based on nanodiamonds NV.
arXiv Detail & Related papers (2022-02-24T01:41:13Z) - Nanoscale Solid-State Nuclear Quadrupole Resonance Spectroscopy using
Depth-Optimized Nitrogen-Vacancy Ensembles in Diamond [9.322875230001717]
Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spectroscopy of bulk quantum materials have provided insight into phenomena such as quantum phase criticality, magnetism, and superconductivity.
With the emergence of nanoscale 2-D materials with magnetic phenomena, inductively-detected NMR and NQR spectroscopy are not sensitive enough to detect the smaller number of spins in nanomaterials.
The nitrogen-vacancy (NV) center in diamond has shown promise in bringing the analytic power of NMR and NQR spectroscopy to the nanoscale.
arXiv Detail & Related papers (2021-12-29T22:19:17Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Absorption-Based Diamond Spin Microscopy on a Plasmonic Quantum
Metasurface [0.0]
Nitrogen vacancy (NV) centers in diamond have emerged as a leading quantum sensor platform.
"Plasmonic quantum sensing metasurface" (PQSM) combines localized surface plasmon polariton resonances with long-range Rayleigh-Wood anomaly modes.
arXiv Detail & Related papers (2020-11-10T04:20:27Z) - Real-time estimation of the optically detected magnetic resonance shift
in diamond quantum thermometry [47.50219326456544]
We investigate the real-time estimation protocols for the frequency shift of optically detected magnetic resonance (ODMR) of nitrogen-vacancy centers in nanodiamonds (NDs)
Efficiently integrating multipoint ODMR measurements and ND particle tracking into fluorescence microscopy has recently demonstrated stable monitoring of the temperature inside living animals.
arXiv Detail & Related papers (2020-06-12T01:44:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.