Prospects for Ultralow-Mass Nuclear Magnetic Resonance using Spin Defects in Hexagonal Boron Nitride
- URL: http://arxiv.org/abs/2505.00383v1
- Date: Thu, 01 May 2025 08:19:55 GMT
- Title: Prospects for Ultralow-Mass Nuclear Magnetic Resonance using Spin Defects in Hexagonal Boron Nitride
- Authors: Declan M. Daly, Niko R. Reed, Stephen J. DeVience, Zechuan Yin, Johannes Cremer, Andrew J. Beling, John W. Blanchard, Ronald L. Walsworth,
- Abstract summary: We develop an alternative nanoscale NMR sensor using the negatively charged boron vacancy ($V_B-$) in hexagonal boron nitride (hBN)<n>As a van der Waals material, hBN's surface is free from dangling bonds and other sources of paramagnetic noise that degrade the performance of near surface NVs.<n>We propose measurement protocols for $V_B-$ NMR for both statistically and uniformly polarized samples at the nano- and micron-scales.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Optically active quantum defects in solids, such as the nitrogen vacancy (NV) center in diamond, are a leading modality for micron-scale and nanoscale (ultralow-mass) nuclear magnetic resonance (NMR) spectroscopy and imaging under ambient conditions. However, the spin and optical properties of NV centers degrade when closer than about 10 nm from the diamond surface, limiting NMR sensitivity as well as spectral and spatial resolution. Here we outline efforts to develop an alternative nanoscale NMR sensor using the negatively charged boron vacancy ($V_B^-$) in hexagonal boron nitride (hBN). As a van der Waals material, hBN's surface is free from dangling bonds and other sources of paramagnetic noise that degrade the performance of near surface NVs, allowing stable $V_B^-$ defects to exist $\sim1\,$nm from the material surface. We discuss the properties of boron vacancies as they apply to narrowband (AC) magnetic field sensing and outline experimental designs optimized for this system. We propose measurement protocols for $V_B^-$ NMR for both statistically and uniformly polarized samples at the nano- and micron-scales, including relevant pulse sequences, sensitivity calculations, and sample confinement strategies; and compare the expected performance to NV-NMR. We estimate back-action effects between the $V_B^-$ electronic spins and the sample nuclear spins at the nanoscale; and account for unconventional diffusion dynamics in the flow-restricted nanoscale regime, calculating its effects on the expected $V_B^-$ NMR signal. Lastly, we identify potential sample targets and operational regimes best suited for both nanoscale and micron-scale $V_B^-$ NMR.
Related papers
- A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)
The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.
We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - High-contrast absorption magnetometry in the visible to near-infrared range with nitrogen-vacancy ensembles [33.7054351451505]
We show a phenomenon of broadband optical absorption by the NV centers starting in the emission wavelength and reaching up to 1000 nm.<n>The lower level of the absorbing transition could be the energetically lower NV singlet state.<n>This opens a new detection wavelength regime with coherent laser signal detection for high-sensitivity NV magnetometry.
arXiv Detail & Related papers (2024-12-06T11:10:55Z) - Enhanced Spectral Density of a Single Germanium Vacancy Center in a
Nanodiamond by Cavity-Integration [35.759786254573896]
Color centers in diamond, among them the negatively-charged germanium vacancy (GeV$-$), are promising candidates for many applications of quantum optics.
We demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P'erot microcavity.
arXiv Detail & Related papers (2023-07-03T10:33:06Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Charge stability and charge-state-based spin readout of shallow
nitrogen-vacancy centers in diamond [32.937319301495144]
Spin-to-charge conversion enables extended measurement times, increasing precision and minimizing noise in the readout.
Nano-scale sensing applications require shallow NV centers within a few $sinano meter$ distance from the surface.
We demonstrate the SCC protocol on four shallow NV centers suitable for nano-scale sensing, obtaining a reduced readout noise of 5--6 times the spin-projection noise limit.
arXiv Detail & Related papers (2022-08-30T11:13:28Z) - Quantum Heterodyne Sensing of Nuclear Spins via Double Resonance [0.0]
A heterodyne approach is widely used to overcome the electron spin lifetime limit in spectral resolution.
This work paves the way towards high field nanoscale heterodyne NMR protocols with NV centres.
arXiv Detail & Related papers (2022-05-20T13:48:59Z) - Developing a Chemical and Structural Understanding of the Surface Oxide
in a Niobium Superconducting Qubit [46.6940373636939]
We conduct a detailed assessment of the surface oxide that forms in ambient conditions for transmon test devices patterned from a niobium film.
In terms of structural analysis, we find that the Nb$ 1-2$O$_5$ region is semicrystalline in nature.
We observe that amorphous regions are more likely to contain oxygen vacancies and exhibit weaker bonds between the niobium and oxygen atoms.
arXiv Detail & Related papers (2022-03-16T16:00:57Z) - Nanoscale Solid-State Nuclear Quadrupole Resonance Spectroscopy using
Depth-Optimized Nitrogen-Vacancy Ensembles in Diamond [9.322875230001717]
Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spectroscopy of bulk quantum materials have provided insight into phenomena such as quantum phase criticality, magnetism, and superconductivity.
With the emergence of nanoscale 2-D materials with magnetic phenomena, inductively-detected NMR and NQR spectroscopy are not sensitive enough to detect the smaller number of spins in nanomaterials.
The nitrogen-vacancy (NV) center in diamond has shown promise in bringing the analytic power of NMR and NQR spectroscopy to the nanoscale.
arXiv Detail & Related papers (2021-12-29T22:19:17Z) - Geometry dependence of micron-scale NMR signals on NV-diamond chips [0.0]
We show that the NMR signal strongly depends on the NV-center orientation with respect to the diamond surface.
The results provide a guideline for NV-NMR spectroscopy of microscopic objects.
arXiv Detail & Related papers (2021-11-17T15:51:14Z) - Low temperature photo-physics of single NV centers in diamond [43.55994393060723]
We investigate the magnetic field dependent photo-physics of Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions.
We observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NV's ground state spin.
Our results offer new insights into the structure of the NVs' excited states and a new tool for their effective characterization.
arXiv Detail & Related papers (2021-05-17T18:00:02Z) - Dynamical decoupling methods in nanoscale NMR [0.0]
Nuclear magnetic resonance schemes can be applied to micron-, and nanometer-sized samples by the aid of quantum sensors such as nitrogen-vacancy (NV) color centers in diamond.
These minute devices allow for magnetometry of nuclear spin ensembles with high spatial and frequency resolution at ambient conditions.
arXiv Detail & Related papers (2021-04-21T16:18:48Z) - Hyperpolarisation of external nuclear spins using nitrogen-vacancy
centre ensembles [0.0]
We present evidence for a polarising interaction between a shallow NV ensemble and external nuclear targets over a micrometre scale.
We find that our results suggest implementation of this technique for NMR sensitivity enhancement is feasible following realistic diamond material improvements.
arXiv Detail & Related papers (2021-01-29T00:02:40Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.