Modeling Graph Node Correlations with Neighbor Mixture Models
- URL: http://arxiv.org/abs/2103.15966v1
- Date: Mon, 29 Mar 2021 21:41:56 GMT
- Title: Modeling Graph Node Correlations with Neighbor Mixture Models
- Authors: Linfeng Liu, Michael Hughes, Li-Ping Liu
- Abstract summary: We propose a new model, the Neighbor Mixture Model (NMM), for modeling node labels in a graph.
This model aims to capture correlations between the labels of nodes in a local neighborhood.
We show our proposed NMM advances the state-of-the-art in modeling real-world labeled graphs.
- Score: 8.845058366817227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new model, the Neighbor Mixture Model (NMM), for modeling node
labels in a graph. This model aims to capture correlations between the labels
of nodes in a local neighborhood. We carefully design the model so it could be
an alternative to a Markov Random Field but with more affordable computations.
In particular, drawing samples and evaluating marginal probabilities of single
labels can be done in linear time. To scale computations to large graphs, we
devise a variational approximation without introducing extra parameters. We
further use graph neural networks (GNNs) to parameterize the NMM, which reduces
the number of learnable parameters while allowing expressive representation
learning. The proposed model can be either fit directly to large observed
graphs or used to enable scalable inference that preserves correlations for
other distributions such as deep generative graph models. Across a diverse set
of node classification, image denoising, and link prediction tasks, we show our
proposed NMM advances the state-of-the-art in modeling real-world labeled
graphs.
Related papers
- Creating generalizable downstream graph models with random projections [22.690120515637854]
We investigate graph representation learning approaches that enable models to generalize across graphs.
We show that using random projections to estimate multiple powers of the transition matrix allows us to build a set of isomorphism-invariant features.
The resulting features can be used to recover enough information about the local neighborhood of a node to enable inference with relevance competitive to other approaches.
arXiv Detail & Related papers (2023-02-17T14:27:00Z) - Joint Network Topology Inference via a Shared Graphon Model [24.077455621015552]
We consider the problem of estimating the topology of multiple networks from nodal observations.
We adopt a graphon as our random graph model, which is a nonparametric model from which graphs of potentially different sizes can be drawn.
arXiv Detail & Related papers (2022-09-17T02:38:58Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Stochastic Iterative Graph Matching [11.128153575173213]
We propose a new model, Iterative Graph MAtching, to address the graph matching problem.
Our model defines a distribution of matchings for a graph pair so the model can explore a wide range of possible matchings.
We conduct extensive experiments across synthetic graph datasets as well as biochemistry and computer vision applications.
arXiv Detail & Related papers (2021-06-04T02:05:35Z) - Optimal Transport Graph Neural Networks [31.191844909335963]
Current graph neural network (GNN) architectures naively average or sum node embeddings into an aggregated graph representation.
We introduce OT-GNN, a model that computes graph embeddings using parametric prototypes.
arXiv Detail & Related papers (2020-06-08T14:57:39Z) - Permutation Invariant Graph Generation via Score-Based Generative
Modeling [114.12935776726606]
We propose a permutation invariant approach to modeling graphs, using the recent framework of score-based generative modeling.
In particular, we design a permutation equivariant, multi-channel graph neural network to model the gradient of the data distribution at the input graph.
For graph generation, we find that our learning approach achieves better or comparable results to existing models on benchmark datasets.
arXiv Detail & Related papers (2020-03-02T03:06:14Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.