Leveraging a Joint of Phenotypic and Genetic Features on Cancer Patient
Subgrouping
- URL: http://arxiv.org/abs/2103.16316v1
- Date: Tue, 30 Mar 2021 13:07:05 GMT
- Title: Leveraging a Joint of Phenotypic and Genetic Features on Cancer Patient
Subgrouping
- Authors: David Oniani, Chen Wang, Yiqing Zhao, Andrew Wen, Hongfang Liu,
Feichen Shen
- Abstract summary: We developed a system leveraging a joint of phenotypic and genetic features for cancer patient subgrouping.
In feature preprocessing, we performed filtering, retaining the most relevant features.
In cancer patient classification, we utilized nine different machine learning models, Random Forests (RF), Decision Tree (DT), Support Vector Machine (SVM), Naive Bayes (NB), Logistic Regression (LR), Multilayer Perceptron (MLP), Gradient Boosting (GB), Convolutional Neural Network (CNN), and Feedforward Neural Network (FNN)
- Score: 7.381190270069632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cancer is responsible for millions of deaths worldwide every year. Although
significant progress has been achieved in cancer medicine, many issues remain
to be addressed for improving cancer therapy. Appropriate cancer patient
stratification is the prerequisite for selecting appropriate treatment plan, as
cancer patients are of known heterogeneous genetic make-ups and phenotypic
differences. In this study, built upon deep phenotypic characterizations
extractable from Mayo Clinic electronic health records (EHRs) and genetic test
reports for a collection of cancer patients, we developed a system leveraging a
joint of phenotypic and genetic features for cancer patient subgrouping.
The workflow is roughly divided into three parts: feature preprocessing,
cancer patient classification, and cancer patient clustering based. In feature
preprocessing step, we performed filtering, retaining the most relevant
features. In cancer patient classification, we utilized joint categorical
features to build a patient-feature matrix and applied nine different machine
learning models, Random Forests (RF), Decision Tree (DT), Support Vector
Machine (SVM), Naive Bayes (NB), Logistic Regression (LR), Multilayer
Perceptron (MLP), Gradient Boosting (GB), Convolutional Neural Network (CNN),
and Feedforward Neural Network (FNN), for classification purposes. Finally, in
the cancer patient clustering step, we leveraged joint embeddings features and
patient-feature associations to build an undirected feature graph and then
trained the cancer feature node embeddings.
Related papers
- Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies.
Medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes.
This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients.
arXiv Detail & Related papers (2024-04-11T21:47:13Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - PACS: Prediction and analysis of cancer subtypes from multi-omics data
based on a multi-head attention mechanism model [2.275409158519155]
We propose a supervised multi-head attention mechanism model (SMA) to classify cancer subtypes successfully.
The attention mechanism and feature sharing module of the SMA model can successfully learn the global and local feature information of multi-omics data.
The SMA model achieves the highest accuracy, F1 macroscopic, F1 weighted, and accurate classification of cancer subtypes in simulated, single-cell, and cancer multiomics datasets.
arXiv Detail & Related papers (2023-08-21T03:54:21Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Improving Precancerous Case Characterization via Transformer-based
Ensemble Learning [31.891340667123124]
The application of natural language processing to cancer pathology reports has been focused on detecting cancer cases.
Improving the characterization of precancerous adenomas assists in developing diagnostic tests for early cancer detection and prevention.
Our results demonstrated the potential of using NLP to leverage real-world health record data to facilitate the development of diagnostic tests for early cancer prevention.
arXiv Detail & Related papers (2022-12-10T00:06:28Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Lymph Node Graph Neural Networks for Cancer Metastasis Prediction [0.342658286826597]
We present a novel graph-based approach to incorporate imaging characteristics of existing cancer spread to local lymph nodes.
We trained an edge-gated Graph Convolutional Network (Gated-GCN) to accurately predict the risk of distant metastasis.
arXiv Detail & Related papers (2021-06-03T09:28:14Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z) - Machine Learning Against Cancer: Accurate Diagnosis of Cancer by Machine
Learning Classification of the Whole Genome Sequencing Data [0.0]
We have developed novel methods of MLAC (Machine Learning Against Cancer) achieving perfect results with perfect precision, sensitivity, and specificity.
We have used the whole genome sequencing data acquired by next-generation RNA sequencing techniques in The Cancer Genome Atlas and Genotype-Tissue Expression projects for cancerous and healthy tissues respectively.
arXiv Detail & Related papers (2020-09-12T18:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.