論文の概要: Automated Cleanup of the ImageNet Dataset by Model Consensus,
Explainability and Confident Learning
- arxiv url: http://arxiv.org/abs/2103.16324v1
- Date: Tue, 30 Mar 2021 13:16:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 20:01:59.507630
- Title: Automated Cleanup of the ImageNet Dataset by Model Consensus,
Explainability and Confident Learning
- Title(参考訳): モデルコンセンサス,説明可能性,自信学習によるimagenetデータセットの自動クリーンアップ
- Authors: Csaba Kert\'esz
- Abstract要約: ImageNetは、ILSVRC12Netでトレーニングされた様々な畳み込みニューラルネットワーク(CNN)のバックボーンである。
本稿では,モデルのコンセンサス,説明可能性,自信のある学習に基づく自動アプリケーションについて述べる。
ImageNet-CleanはSqueezeNetおよびEfficientNet-B0モデルのモデルパフォーマンスを2-2.4%向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The convolutional neural networks (CNNs) trained on ILSVRC12 ImageNet were
the backbone of various applications as a generic classifier, a feature
extractor or a base model for transfer learning. This paper describes automated
heuristics based on model consensus, explainability and confident learning to
correct labeling mistakes and remove ambiguous images from this dataset. After
making these changes on the training and validation sets, the ImageNet-Clean
improves the model performance by 2-2.4 % for SqueezeNet and EfficientNet-B0
models. The results support the importance of larger image corpora and
semi-supervised learning, but the original datasets must be fixed to avoid
transmitting their mistakes and biases to the student learner. Further
contributions describe the training impacts of widescreen input resolutions in
portrait and landscape orientations. The trained models and scripts are
published on Github (https://github.com/kecsap/imagenet-clean) to clean up
ImageNet and ImageNetV2 datasets for reproducible research.
- Abstract(参考訳): ILSVRC12 ImageNetでトレーニングされた畳み込みニューラルネットワーク(CNN)は、汎用分類器、特徴抽出器、転送学習のベースモデルとして様々なアプリケーションのバックボーンである。
本稿では,モデルのコンセンサス,説明可能性,自信のある学習に基づく自動ヒューリスティックスについて述べる。
これらのトレーニングと検証セットの変更を経て、ImageNet-Cleanは、SqueezeNetとEfficientNet-B0モデルのモデルパフォーマンスを2-2.4 %改善した。
結果は、より大きな画像コーパスと半教師付き学習の重要性を支持するが、学生に誤りや偏見を伝達しないように、元のデータセットを修正しなければならない。
さらに、ポートレートおよびランドスケープオリエンテーションにおけるワイドスクリーン入力解像度のトレーニング効果について述べる。
トレーニングされたモデルとスクリプトはgithubで公開されている(https://github.com/kecsap/imagenet-clean)。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Machine Unlearning for Image-to-Image Generative Models [18.952634119351465]
本稿では、画像から画像への生成モデルのための機械学習のための統一フレームワークを提供する。
本稿では,厳密な理論解析を基盤とした計算効率のよいアルゴリズムを提案する。
ImageNet-1KとPlaces-365の2つの大規模データセットに関する実証研究は、我々のアルゴリズムが保持サンプルの可用性に依存していないことを示している。
論文 参考訳(メタデータ) (2024-02-01T05:35:25Z) - DreamTeacher: Pretraining Image Backbones with Deep Generative Models [103.62397699392346]
本稿では、下流画像バックボーンの事前学習に生成ネットワークを利用する自己教師付き特徴表現学習フレームワークを提案する。
1)画像Netなどの大規模ラベル付きデータセット上で,これらのバックボーンを事前学習する代替として,学習した生成特徴を対象画像のバックボーンに蒸留する。
私たちのDreamTeacherは、ボード全体で既存の自己指導型表現学習のアプローチを大幅に上回っていることを実証的に見出した。
論文 参考訳(メタデータ) (2023-07-14T17:17:17Z) - ImageNet-E: Benchmarking Neural Network Robustness via Attribute Editing [45.14977000707886]
ImageNetにおける高い精度は、通常、異なる汚職に対してより堅牢性をもたらす。
我々は、背景、大きさ、位置、方向の制御によるオブジェクト編集のためのツールキットを作成する。
我々は、畳み込みニューラルネットワークと視覚変換器の両方を含む現在のディープラーニングモデルの性能を評価する。
論文 参考訳(メタデータ) (2023-03-30T02:02:32Z) - Core Risk Minimization using Salient ImageNet [53.616101711801484]
私たちは、1000のImagenetクラスのコアとスプリアス機能をローカライズする100万人以上のソフトマスクを備えたSalient Imagenetデータセットを紹介します。
このデータセットを用いて、まず、いくつかのImagenet事前訓練されたモデル(総計42件)の素早い特徴に対する依存度を評価する。
次に、コアリスク最小化(CoRM)と呼ばれる新しい学習パラダイムを導入する。
論文 参考訳(メタデータ) (2022-03-28T01:53:34Z) - Application of Facial Recognition using Convolutional Neural Networks
for Entry Access Control [0.0]
本論文は,画像中の人物を入力として捉え,その人物を著者の1人か否かを分類する,教師付き分類問題の解決に焦点をあてる。
提案手法は,(1)WoodNetと呼ばれるニューラルネットワークをスクラッチから構築し,トレーニングすること,(2)ImageNetデータベース上に事前トレーニングされたネットワークを利用することで,転送学習を活用すること,の2つである。
結果は、データセット内の個人を高い精度で分類し、保持されたテストデータに対して99%以上の精度で達成する2つのモデルである。
論文 参考訳(メタデータ) (2020-11-23T07:55:24Z) - Shape-Texture Debiased Neural Network Training [50.6178024087048]
畳み込みニューラルネットワークは、トレーニングデータセットによって、テクスチャまたは形状にバイアスされることが多い。
形状・テクスチャ・デバイアスド学習のためのアルゴリズムを開発した。
実験により,本手法は複数の画像認識ベンチマークにおけるモデル性能の向上に成功していることが示された。
論文 参考訳(メタデータ) (2020-10-12T19:16:12Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - Distilling Visual Priors from Self-Supervised Learning [24.79633121345066]
畳み込みニューラルネットワーク(CNN)は、小さなトレーニングデータセットに適合する傾向にある。
データ不足条件下での画像分類のためのCNNモデルの一般化能力を向上させるために,自己教師付き学習と知識蒸留を活用した2相パイプラインを提案する。
論文 参考訳(メタデータ) (2020-08-01T13:07:18Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
ImageNet作成プロセスにおける特定の設計選択が、結果のデータセットの忠実性に与える影響について検討する。
私たちの分析では、ノイズの多いデータ収集パイプラインが、結果のベンチマークと、それがプロキシとして機能する実世界のタスクとの間に、体系的なミスアライメントをもたらす可能性があることを指摘しています。
論文 参考訳(メタデータ) (2020-05-22T17:39:16Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
私たちはまず、多くのデジタル病理データセットを22の分類タスクと約900kの画像のプールに組み立て、変換しました。
特徴抽出器として使用されるモデルは、ImageNet事前訓練されたモデルよりも大幅に改善されるか、同等のパフォーマンスを提供するかを示す。
論文 参考訳(メタデータ) (2020-05-05T08:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。