ICE: Inter-instance Contrastive Encoding for Unsupervised Person
Re-identification
- URL: http://arxiv.org/abs/2103.16364v1
- Date: Tue, 30 Mar 2021 14:05:09 GMT
- Title: ICE: Inter-instance Contrastive Encoding for Unsupervised Person
Re-identification
- Authors: Hao Chen, Benoit Lagadec, Francois Bremond
- Abstract summary: Unsupervised person re-identification (ReID) aims at learning discriminative identity features without annotations.
We propose Inter-instance Contrastive ICE that leverages inter-instance pairwise similarity scores to boost previous class-level contrastive ReID methods.
Experiments on several large-scale person ReID datasets validate the effectiveness of our proposed unsupervised method ICE.
- Score: 7.766663319126491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised person re-identification (ReID) aims at learning discriminative
identity features without annotations. Recently, self-supervised contrastive
learning has gained increasing attention for its effectiveness in unsupervised
representation learning. The main idea of instance contrastive learning is to
match a same instance in different augmented views. However, the relationship
between different instances of a same identity has not been explored in
previous methods, leading to sub-optimal ReID performance. To address this
issue, we propose Inter-instance Contrastive Encoding (ICE) that leverages
inter-instance pairwise similarity scores to boost previous class-level
contrastive ReID methods. We first use pairwise similarity ranking as one-hot
hard pseudo labels for hard instance contrast, which aims at reducing
intra-class variance. Then, we use similarity scores as soft pseudo labels to
enhance the consistency between augmented and original views, which makes our
model more robust to augmentation perturbations. Experiments on several
large-scale person ReID datasets validate the effectiveness of our proposed
unsupervised method ICE, which is competitive with even supervised methods.
Related papers
- Soft Neighbors are Positive Supporters in Contrastive Visual
Representation Learning [35.53729744330751]
Contrastive learning methods train visual encoders by comparing views from one instance to others.
This binary instance discrimination is studied extensively to improve feature representations in self-supervised learning.
In this paper, we rethink the instance discrimination framework and find the binary instance labeling insufficient to measure correlations between different samples.
arXiv Detail & Related papers (2023-03-30T04:22:07Z) - Learning Invariance from Generated Variance for Unsupervised Person
Re-identification [15.096776375794356]
We propose to replace traditional data augmentation with a generative adversarial network (GAN)
A 3D mesh guided person image generator is proposed to disentangle a person image into id-related and id-unrelated features.
By jointly training the generative and the contrastive modules, our method achieves new state-of-the-art unsupervised person ReID performance on mainstream large-scale benchmarks.
arXiv Detail & Related papers (2023-01-02T15:40:14Z) - Pseudo-Pair based Self-Similarity Learning for Unsupervised Person
Re-identification [47.44945334929426]
We present a pseudo-pair based self-similarity learning approach for unsupervised person re-ID without human annotations.
We propose to assign pseudo labels to images through the pairwise-guided similarity separation.
It learns local discriminative features from individual images via intra-similarity, and discovers the patch correspondence across images via inter-similarity.
arXiv Detail & Related papers (2022-07-09T04:05:06Z) - Learning from Self-Discrepancy via Multiple Co-teaching for Cross-Domain
Person Re-Identification [12.106894735305714]
We propose a multiple co-teaching framework for domain adaptive person re-ID.
Our method achieves competitive performance compared with the state-of-the-arts.
arXiv Detail & Related papers (2021-04-06T03:12:11Z) - Camera-aware Proxies for Unsupervised Person Re-Identification [60.26031011794513]
This paper tackles the purely unsupervised person re-identification (Re-ID) problem that requires no annotations.
We propose to split each single cluster into multiple proxies and each proxy represents the instances coming from the same camera.
Based on the camera-aware proxies, we design both intra- and inter-camera contrastive learning components for our Re-ID model.
arXiv Detail & Related papers (2020-12-19T12:37:04Z) - Beyond Single Instance Multi-view Unsupervised Representation Learning [21.449132256091662]
We impose more accurate instance discrimination capability by measuring the joint similarity between two randomly sampled instances.
We believe that learning joint similarity helps to improve the performance when encoded features are distributed more evenly in the latent space.
arXiv Detail & Related papers (2020-11-26T15:43:27Z) - Fully Unsupervised Person Re-identification viaSelective Contrastive
Learning [58.5284246878277]
Person re-identification (ReID) aims at searching the same identity person among images captured by various cameras.
We propose a novel selective contrastive learning framework for unsupervised feature learning.
Experimental results demonstrate the superiority of our method in unsupervised person ReID compared with the state-of-the-arts.
arXiv Detail & Related papers (2020-10-15T09:09:23Z) - Unsupervised Feature Learning by Cross-Level Instance-Group
Discrimination [68.83098015578874]
We integrate between-instance similarity into contrastive learning, not directly by instance grouping, but by cross-level discrimination.
CLD effectively brings unsupervised learning closer to natural data and real-world applications.
New state-of-the-art on self-supervision, semi-supervision, and transfer learning benchmarks, and beats MoCo v2 and SimCLR on every reported performance.
arXiv Detail & Related papers (2020-08-09T21:13:13Z) - CycAs: Self-supervised Cycle Association for Learning Re-identifiable
Descriptions [61.724894233252414]
This paper proposes a self-supervised learning method for the person re-identification (re-ID) problem.
Existing unsupervised methods usually rely on pseudo labels, such as those from video tracklets or clustering.
We introduce a different unsupervised method that allows us to learn pedestrian embeddings from raw videos, without resorting to pseudo labels.
arXiv Detail & Related papers (2020-07-15T09:52:35Z) - Intra-Camera Supervised Person Re-Identification [87.88852321309433]
We propose a novel person re-identification paradigm based on an idea of independent per-camera identity annotation.
This eliminates the most time-consuming and tedious inter-camera identity labelling process.
We formulate a Multi-tAsk mulTi-labEl (MATE) deep learning method for Intra-Camera Supervised (ICS) person re-id.
arXiv Detail & Related papers (2020-02-12T15:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.