論文の概要: Source-Free Domain Adaptation for Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2103.16372v1
- Date: Tue, 30 Mar 2021 14:14:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 14:52:49.063147
- Title: Source-Free Domain Adaptation for Semantic Segmentation
- Title(参考訳): 意味セグメンテーションのためのソースフリードメイン適応
- Authors: Yuang Liu, Wei Zhang, Jun Wang
- Abstract要約: Unsupervised Domain Adaptation(UDA)は、セマンティックセグメンテーションのための畳み込みニューラルネットワークベースのアプローチがピクセルレベルの注釈付きデータに大きく依存するという課題に取り組むことができる。
そこで本稿では,十分に訓練されたソースモデルとラベルなしのターゲットドメインデータセットのみを適用可能な,意味セグメンテーションのためのソースフリーなドメイン適応フレームワークsfdaを提案する。
- 参考スコア(独自算出の注目度): 11.722728148523366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Domain Adaptation (UDA) can tackle the challenge that
convolutional neural network(CNN)-based approaches for semantic segmentation
heavily rely on the pixel-level annotated data, which is labor-intensive.
However, existing UDA approaches in this regard inevitably require the full
access to source datasets to reduce the gap between the source and target
domains during model adaptation, which are impractical in the real scenarios
where the source datasets are private, and thus cannot be released along with
the well-trained source models. To cope with this issue, we propose a
source-free domain adaptation framework for semantic segmentation, namely SFDA,
in which only a well-trained source model and an unlabeled target domain
dataset are available for adaptation. SFDA not only enables to recover and
preserve the source domain knowledge from the source model via knowledge
transfer during model adaptation, but also distills valuable information from
the target domain for self-supervised learning. The pixel- and patch-level
optimization objectives tailored for semantic segmentation are seamlessly
integrated in the framework. The extensive experimental results on numerous
benchmark datasets highlight the effectiveness of our framework against the
existing UDA approaches relying on source data.
- Abstract(参考訳): unsupervised domain adaptation(uda)は、畳み込みニューラルネットワーク(cnn)に基づくセマンティックセグメンテーションのアプローチが、労働集約的なピクセルレベルの注釈データに大きく依存しているという課題に対処できる。
しかしながら、この点において既存のudaアプローチでは、ソースデータセットがプライベートである実際のシナリオでは現実的ではなく、十分に訓練されたソースモデルとともにリリースできない、モデル適応中にソースとターゲットドメインの間のギャップを減らすために、必然的にソースデータセットへの完全なアクセスを必要とする。
この問題に対処するため,我々は,十分に訓練されたソースモデルとラベルなしのターゲットドメインデータセットのみを適用可能な,意味セグメンテーションのためのソースフリーなドメイン適応フレームワークsfdaを提案する。
SFDAは、モデル適応中の知識伝達を通じて、ソースモデルからソースドメイン知識を復元および保存するだけでなく、自己教師付き学習のためにターゲットドメインから貴重な情報を蒸留する。
セマンティックセグメンテーションに適したピクセルレベルとパッチレベルの最適化目標は、フレームワークにシームレスに統合される。
多数のベンチマークデータセットに対する広範な実験結果は、ソースデータに依存する既存のUDAアプローチに対する我々のフレームワークの有効性を強調している。
関連論文リスト
- Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
非教師なしドメイン適応(UDA)は、ソースドメインからラベルのないデータを持つターゲットドメインへの知識の転送に非常に効果的であることが証明されている。
オープンセットドメイン適応(ODA)は、トレーニングフェーズ中にこれらのクラスを識別する潜在的なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-30T11:38:46Z) - Towards Source-free Domain Adaptive Semantic Segmentation via Importance-aware and Prototype-contrast Learning [26.544837987747766]
本稿では、Importance-Aware と Prototype-Contrast Learning を用いた、エンドツーエンドのソースフリードメイン適応セマンティックセマンティックセマンティクス手法を提案する。
提案したIAPCフレームワークは、訓練済みソースモデルからドメイン不変知識を効果的に抽出し、ラベルなしターゲットドメインからドメイン固有知識を学習する。
論文 参考訳(メタデータ) (2023-06-02T15:09:19Z) - Continual Source-Free Unsupervised Domain Adaptation [37.060694803551534]
既存のソースフリーのUnsupervised Domain Adaptationアプローチは破滅的な忘れを見せる。
本稿では,SuDAの継続的な学習環境における課題に対応するための連続的なSUDA(C-SUDA)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-14T20:11:05Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
ドメイン適応は通常、ソースドメインデータにアクセスして、ターゲットデータとのドメインアライメントのために配布情報を利用する必要があります。
多くの実世界のシナリオでは、プライバシの問題により、ターゲットドメインのモデル適応中にソースデータがアクセスできない場合がある。
本稿では,本問題に対する新たな擬似ラベル付け手法を提案する。
論文 参考訳(メタデータ) (2021-09-19T06:38:21Z) - Adapting Off-the-Shelf Source Segmenter for Target Medical Image
Segmentation [12.703234995718372]
教師なしドメイン適応(Unsupervised domain adapt, UDA)は、ラベル付きソースドメインから学習した知識をラベルなしおよび見えないターゲットドメインに転送することを目的としている。
データストレージやプライバシの問題のため、適応段階でのソースドメインデータへのアクセスは制限されることが多い。
我々は、ソースドメインで事前訓練されたオフザシェルフセグメントモデルをターゲットドメインに適用することを提案する。
論文 参考訳(メタデータ) (2021-06-23T16:16:55Z) - Unsupervised Model Adaptation for Continual Semantic Segmentation [15.820660013260584]
本研究では,ラベル付きソースドメインを用いて訓練されたセマンティックセグメンテーションモデルを,ラベル付きターゲットドメインで適切に一般化するアルゴリズムを開発した。
我々は,アルゴリズムが有効である条件を理論的に分析し,説明する。
ベンチマーク適応タスクの実験では, 共同UDA手法と比較して, 競争性能が向上することを示した。
論文 参考訳(メタデータ) (2020-09-26T04:55:50Z) - Towards Inheritable Models for Open-Set Domain Adaptation [56.930641754944915]
本稿では、将来、ソースデータセットが存在しない場合の適応を容易にするために、ソース学習モデルを用いた実用的なドメイン適応パラダイムを提案する。
本稿では,ソースデータがない場合でも,対象領域に対して最適なソースモデルの選択を可能にするために,継承可能性の定量化を目的とする手法を提案する。
論文 参考訳(メタデータ) (2020-04-09T07:16:30Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。