A probabilistic deep learning approach to automate the interpretation of
multi-phase diffraction spectra
- URL: http://arxiv.org/abs/2103.16664v1
- Date: Tue, 30 Mar 2021 20:13:01 GMT
- Title: A probabilistic deep learning approach to automate the interpretation of
multi-phase diffraction spectra
- Authors: Nathan J. Szymanski, Christopher J. Bartel, Yan Zeng, Qingsong Tu,
Gerbrand Ceder
- Abstract summary: We develop an ensemble convolutional neural network trained on simulated diffraction spectra to identify complex multi-phase mixtures.
Our model is benchmarked on simulated and experimentally measured diffraction spectra, showing exceptional performance with accuracies exceeding those given by previously reported methods.
- Score: 4.240899165468488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous synthesis and characterization of inorganic materials requires the
automatic and accurate analysis of X-ray diffraction spectra. For this task, we
designed a probabilistic deep learning algorithm to identify complex
multi-phase mixtures. At the core of this algorithm lies an ensemble
convolutional neural network trained on simulated diffraction spectra, which
are systematically augmented with physics-informed perturbations to account for
artifacts that can arise during experimental sample preparation and synthesis.
Larger perturbations associated with off-stoichiometry are also captured by
supplementing the training set with hypothetical solid solutions. Spectra
containing mixtures of materials are analyzed with a newly developed branching
algorithm that utilizes the probabilistic nature of the neural network to
explore suspected mixtures and identify the set of phases that maximize
confidence in the prediction. Our model is benchmarked on simulated and
experimentally measured diffraction spectra, showing exceptional performance
with accuracies exceeding those given by previously reported methods based on
profile matching and deep learning. We envision that the algorithm presented
here may be integrated in experimental workflows to facilitate the
high-throughput and autonomous discovery of inorganic materials.
Related papers
- Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
Finding all structures compatible with reflectometry data is computationally prohibitive for standard algorithms.
We address this lack of reliability with a probabilistic deep learning method that identifies all realistic structures in seconds.
Our method, Prior-Amortized Neural Posterior Estimation (PANPE), combines simulation-based inference with novel adaptive priors.
arXiv Detail & Related papers (2024-07-26T10:29:16Z) - Assessing the Performance of 1D-Convolution Neural Networks to Predict
Concentration of Mixture Components from Raman Spectra [0.0]
An emerging application of Raman spectroscopy is monitoring the state of chemical reactors during biologic drug production.
Chemometric algorithms are used to interpret Raman spectra produced from complex mixtures of bioreactor contents as a reaction evolves.
Finding the optimal algorithm for a specific bioreactor environment is challenging due to the lack of freely available Raman mixture datasets.
arXiv Detail & Related papers (2023-06-29T01:41:07Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Exploring Supervised Machine Learning for Multi-Phase Identification and
Quantification from Powder X-Ray Diffraction Spectra [1.0660480034605242]
Powder X-ray diffraction analysis is a critical component of materials characterization methodologies.
Deep learning has become a prime focus for predicting crystallographic parameters and features from X-ray spectra.
Here, we are interested in conventional supervised learning algorithms in lieu of deep learning for multi-label crystalline phase identification.
arXiv Detail & Related papers (2022-11-16T00:36:13Z) - Trustworthiness of Laser-Induced Breakdown Spectroscopy Predictions via
Simulation-based Synthetic Data Augmentation and Multitask Learning [4.633997895806144]
We consider quantitative analyses of spectral data using laser-induced breakdown spectroscopy.
We address the small size of training data available, and the validation of the predictions during inference on unknown data.
arXiv Detail & Related papers (2022-10-07T18:00:09Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Neural density estimation and uncertainty quantification for laser
induced breakdown spectroscopy spectra [4.698576003197588]
We use normalizing flows on structured spectral latent spaces to estimate probability densities.
We evaluate a method for uncertainty quantification when predicting unobserved state vectors.
We demonstrate the capability of this approach on laser-induced breakdown spectroscopy data collected by the Mars rover Curiosity.
arXiv Detail & Related papers (2021-08-17T01:10:29Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
This paper proposes a new network structure for unsupervised deep representation learning based on spectral analysis.
It can identify the local similarities among images in patch level and thus more robust against occlusion.
It can learn more clustering-friendly representations and is capable to reveal the deep correlations among data samples.
arXiv Detail & Related papers (2020-09-11T05:07:15Z) - Differentiable Programming for Hyperspectral Unmixing using a
Physics-based Dispersion Model [9.96234892716562]
In this paper, spectral variation is considered from a physics-based approach and incorporated into an end-to-end spectral unmixing algorithm.
A technique for inverse rendering using a convolutional neural network is introduced to enhance performance and speed when training data is available.
Results achieve state-of-the-art on both infrared and visible-to-near-infrared (VNIR) datasets.
arXiv Detail & Related papers (2020-07-12T14:16:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.