Deep Simultaneous Optimisation of Sampling and Reconstruction for
Multi-contrast MRI
- URL: http://arxiv.org/abs/2103.16744v1
- Date: Wed, 31 Mar 2021 00:45:58 GMT
- Title: Deep Simultaneous Optimisation of Sampling and Reconstruction for
Multi-contrast MRI
- Authors: Xinwen Liu, Jing Wang, Fangfang Tang, Shekhar S. Chandra, Feng Liu,
and Stuart Crozier
- Abstract summary: We propose an algorithm that generates the optimised sampling pattern and reconstruction scheme of one contrast.
The proposed algorithm achieves increased PSNR and SSIM with the resulting optimal sampling pattern.
- Score: 6.981200113164422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MRI images of the same subject in different contrasts contain shared
information, such as the anatomical structure. Utilizing the redundant
information amongst the contrasts to sub-sample and faithfully reconstruct
multi-contrast images could greatly accelerate the imaging speed, improve image
quality and shorten scanning protocols. We propose an algorithm that generates
the optimised sampling pattern and reconstruction scheme of one contrast (e.g.
T2-weighted image) when images with different contrast (e.g. T1-weighted image)
have been acquired. The proposed algorithm achieves increased PSNR and SSIM
with the resulting optimal sampling pattern compared to other acquisition
patterns and single contrast methods.
Related papers
- DuDoUniNeXt: Dual-domain unified hybrid model for single and
multi-contrast undersampled MRI reconstruction [24.937435059755288]
We propose DuDoUniNeXt, a unified dual-domain MRI reconstruction network that can accommodate to scenarios involving absent, low-quality, and high-quality reference images.
Experimental results demonstrate that the proposed model surpasses state-of-the-art SC and MC models significantly.
arXiv Detail & Related papers (2024-03-08T12:26:48Z) - Dual-Domain Multi-Contrast MRI Reconstruction with Synthesis-based
Fusion Network [8.721677700107639]
Our proposed framework, based on deep learning, facilitates the optimisation for under-sampled target contrast.
The method consists of three key steps: 1) Learning to synthesise data resembling the target contrast from the reference contrast; 2) Registering the multi-contrast data to reduce inter-scan motion; and 3) Utilising the registered data for reconstructing the target contrast.
Experiments demonstrate the superiority of our proposed framework, for up to an 8-fold acceleration rate, compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2023-12-01T15:40:26Z) - Deep Unfolding Convolutional Dictionary Model for Multi-Contrast MRI
Super-resolution and Reconstruction [23.779641808300596]
We propose a multi-contrast convolutional dictionary (MC-CDic) model under the guidance of the optimization algorithm.
We employ the proximal gradient algorithm to optimize the model and unroll the iterative steps into a deep CDic model.
Experimental results demonstrate the superior performance of the proposed MC-CDic model against existing SOTA methods.
arXiv Detail & Related papers (2023-09-03T13:18:59Z) - JoJoNet: Joint-contrast and Joint-sampling-and-reconstruction Network
for Multi-contrast MRI [49.29851365978476]
The proposed framework consists of a sampling mask generator for each image contrast and a reconstructor exploiting the inter-contrast correlations with a recurrent structure.
The acceleration ratio of each image contrast is also learnable and can be driven by a downstream task performance.
arXiv Detail & Related papers (2022-10-22T20:46:56Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - Fast T2w/FLAIR MRI Acquisition by Optimal Sampling of Information
Complementary to Pre-acquired T1w MRI [52.656075914042155]
We propose an iterative framework to optimize the under-sampling pattern for MRI acquisition of another modality.
We have demonstrated superior performance of our learned under-sampling patterns on a public dataset.
arXiv Detail & Related papers (2021-11-11T04:04:48Z) - Exploring Separable Attention for Multi-Contrast MR Image
Super-Resolution [88.16655157395785]
We propose a separable attention network (comprising a priority attention and background separation attention) named SANet.
It can explore the foreground and background areas in the forward and reverse directions with the help of the auxiliary contrast.
It is the first model to explore a separable attention mechanism that uses the auxiliary contrast to predict the foreground and background regions.
arXiv Detail & Related papers (2021-09-03T05:53:07Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - MR-Contrast-Aware Image-to-Image Translations with Generative
Adversarial Networks [5.3580471186206005]
We train an image-to-image generative adversarial network conditioned on the MR acquisition parameters repetition time and echo time.
Our approach yields a peak signal-to-noise ratio and structural similarity of 24.48 and 0.66, surpassing the pix2pix benchmark model significantly.
arXiv Detail & Related papers (2021-04-03T17:05:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.