Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction
- URL: http://arxiv.org/abs/2209.07030v1
- Date: Thu, 15 Sep 2022 03:58:30 GMT
- Title: Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction
- Authors: Gang Yang, Li Zhang, Man Zhou, Aiping Liu, Xun Chen, Zhiwei Xiong,
Feng Wu
- Abstract summary: We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
- Score: 68.80715727288514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) with high resolution (HR) provides more
detailed information for accurate diagnosis and quantitative image analysis.
Despite the significant advances, most existing super-resolution (SR)
reconstruction network for medical images has two flaws: 1) All of them are
designed in a black-box principle, thus lacking sufficient interpretability and
further limiting their practical applications. Interpretable neural network
models are of significant interest since they enhance the trustworthiness
required in clinical practice when dealing with medical images. 2) most
existing SR reconstruction approaches only use a single contrast or use a
simple multi-contrast fusion mechanism, neglecting the complex relationships
between different contrasts that are critical for SR improvement. To deal with
these issues, in this paper, a novel Model-Guided interpretable Deep Unfolding
Network (MGDUN) for medical image SR reconstruction is proposed. The
Model-Guided image SR reconstruction approach solves manually designed
objective functions to reconstruct HR MRI. We show how to unfold an iterative
MGDUN algorithm into a novel model-guided deep unfolding network by taking the
MRI observation matrix and explicit multi-contrast relationship matrix into
account during the end-to-end optimization. Extensive experiments on the
multi-contrast IXI dataset and BraTs 2019 dataset demonstrate the superiority
of our proposed model.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Fill the K-Space and Refine the Image: Prompting for Dynamic and
Multi-Contrast MRI Reconstruction [31.404228406642194]
The key to dynamic or multi-contrast magnetic resonance imaging (MRI) reconstruction lies in exploring inter-frame or inter-contrast information.
We propose a two-stage MRI reconstruction pipeline to address these limitations.
Our proposed method significantly outperforms previous state-of-the-art accelerated MRI reconstruction methods.
arXiv Detail & Related papers (2023-09-25T02:51:00Z) - Deep Unfolding Convolutional Dictionary Model for Multi-Contrast MRI
Super-resolution and Reconstruction [23.779641808300596]
We propose a multi-contrast convolutional dictionary (MC-CDic) model under the guidance of the optimization algorithm.
We employ the proximal gradient algorithm to optimize the model and unroll the iterative steps into a deep CDic model.
Experimental results demonstrate the superior performance of the proposed MC-CDic model against existing SOTA methods.
arXiv Detail & Related papers (2023-09-03T13:18:59Z) - Dual Arbitrary Scale Super-Resolution for Multi-Contrast MRI [23.50915512118989]
Multi-contrast Super-Resolution (SR) reconstruction is promising to yield SR images with higher quality.
radiologists are accustomed to zooming the MR images at arbitrary scales rather than using a fixed scale.
We propose an implicit neural representations based dual-arbitrary multi-contrast MRI super-resolution method, called Dual-ArbNet.
arXiv Detail & Related papers (2023-07-05T14:43:26Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study.
Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence.
In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality.
arXiv Detail & Related papers (2021-08-12T08:46:35Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Fine-grained MRI Reconstruction using Attentive Selection Generative
Adversarial Networks [0.0]
We propose a novel attention-based deep learning framework to provide high-quality MRI reconstruction.
We incorporate large-field contextual feature integration and attention selection in a generative adversarial network (GAN) framework.
arXiv Detail & Related papers (2021-03-13T09:58:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.