Rainbow Memory: Continual Learning with a Memory of Diverse Samples
- URL: http://arxiv.org/abs/2103.17230v1
- Date: Wed, 31 Mar 2021 17:28:29 GMT
- Title: Rainbow Memory: Continual Learning with a Memory of Diverse Samples
- Authors: Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, Jonghyun Choi
- Abstract summary: We argue the importance of diversity of samples in an episodic memory.
We propose a novel memory management strategy based on per-sample classification uncertainty and data augmentation.
We show that the proposed method significantly improves the accuracy in blurry continual learning setups.
- Score: 14.520337285540148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning is a realistic learning scenario for AI models. Prevalent
scenario of continual learning, however, assumes disjoint sets of classes as
tasks and is less realistic rather artificial. Instead, we focus on 'blurry'
task boundary; where tasks shares classes and is more realistic and practical.
To address such task, we argue the importance of diversity of samples in an
episodic memory. To enhance the sample diversity in the memory, we propose a
novel memory management strategy based on per-sample classification uncertainty
and data augmentation, named Rainbow Memory (RM). With extensive empirical
validations on MNIST, CIFAR10, CIFAR100, and ImageNet datasets, we show that
the proposed method significantly improves the accuracy in blurry continual
learning setups, outperforming state of the arts by large margins despite its
simplicity. Code and data splits will be available in
https://github.com/clovaai/rainbow-memory.
Related papers
- Just a Glimpse: Rethinking Temporal Information for Video Continual
Learning [58.7097258722291]
We propose a novel replay mechanism for effective video continual learning based on individual/single frames.
Under extreme memory constraints, video diversity plays a more significant role than temporal information.
Our method achieves state-of-the-art performance, outperforming the previous state-of-the-art by up to 21.49%.
arXiv Detail & Related papers (2023-05-28T19:14:25Z) - Improving Image Recognition by Retrieving from Web-Scale Image-Text Data [68.63453336523318]
We introduce an attention-based memory module, which learns the importance of each retrieved example from the memory.
Compared to existing approaches, our method removes the influence of the irrelevant retrieved examples, and retains those that are beneficial to the input query.
We show that it achieves state-of-the-art accuracies in ImageNet-LT, Places-LT and Webvision datasets.
arXiv Detail & Related papers (2023-04-11T12:12:05Z) - Adaptive Cross Batch Normalization for Metric Learning [75.91093210956116]
Metric learning is a fundamental problem in computer vision.
We show that it is equally important to ensure that the accumulated embeddings are up to date.
In particular, it is necessary to circumvent the representational drift between the accumulated embeddings and the feature embeddings at the current training iteration.
arXiv Detail & Related papers (2023-03-30T03:22:52Z) - Saliency-Augmented Memory Completion for Continual Learning [8.243137410556495]
How to forget is a problem continual learning must address.
Our paper proposes a new saliency-augmented memory completion framework for continual learning.
arXiv Detail & Related papers (2022-12-26T18:06:39Z) - Learning an evolved mixture model for task-free continual learning [11.540150938141034]
We address the Task-Free Continual Learning (TFCL) in which a model is trained on non-stationary data streams with no explicit task information.
We introduce two simple dropout mechanisms to selectively remove stored examples in order to avoid memory overload.
arXiv Detail & Related papers (2022-07-11T16:01:27Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement.
We show that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work.
We propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel.
arXiv Detail & Related papers (2022-05-26T08:24:01Z) - Online Continual Learning on a Contaminated Data Stream with Blurry Task
Boundaries [17.43350151320054]
A large body of continual learning (CL) methods assumes data streams with clean labels, and online learning scenarios under noisy data streams are yet underexplored.
We consider a more practical CL task setup of an online learning from blurry data stream with corrupted labels, where existing CL methods struggle.
We propose a novel strategy to manage and use the memory by a unified approach of label noise aware diverse sampling and robust learning with semi-supervised learning.
arXiv Detail & Related papers (2022-03-29T08:52:45Z) - vCLIMB: A Novel Video Class Incremental Learning Benchmark [53.90485760679411]
We introduce vCLIMB, a novel video continual learning benchmark.
vCLIMB is a standardized test-bed to analyze catastrophic forgetting of deep models in video continual learning.
We propose a temporal consistency regularization that can be applied on top of memory-based continual learning methods.
arXiv Detail & Related papers (2022-01-23T22:14:17Z) - Meta-Learning with Variational Semantic Memory for Word Sense
Disambiguation [56.830395467247016]
We propose a model of semantic memory for WSD in a meta-learning setting.
Our model is based on hierarchical variational inference and incorporates an adaptive memory update rule via a hypernetwork.
We show our model advances the state of the art in few-shot WSD, supports effective learning in extremely data scarce scenarios.
arXiv Detail & Related papers (2021-06-05T20:40:01Z) - Memory Wrap: a Data-Efficient and Interpretable Extension to Image
Classification Models [9.848884631714451]
Memory Wrap is a plug-and-play extension to any image classification model.
It improves both data-efficiency and model interpretability, adopting a content-attention mechanism.
We show that Memory Wrap outperforms standard classifiers when it learns from a limited set of data.
arXiv Detail & Related papers (2021-06-01T07:24:19Z) - Neuromodulated Neural Architectures with Local Error Signals for
Memory-Constrained Online Continual Learning [4.2903672492917755]
We develop a biologically-inspired light weight neural network architecture that incorporates local learning and neuromodulation.
We demonstrate the efficacy of our approach on both single task and continual learning setting.
arXiv Detail & Related papers (2020-07-16T07:41:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.