Neuromodulated Neural Architectures with Local Error Signals for
Memory-Constrained Online Continual Learning
- URL: http://arxiv.org/abs/2007.08159v2
- Date: Sat, 13 Mar 2021 19:10:17 GMT
- Title: Neuromodulated Neural Architectures with Local Error Signals for
Memory-Constrained Online Continual Learning
- Authors: Sandeep Madireddy, Angel Yanguas-Gil, Prasanna Balaprakash
- Abstract summary: We develop a biologically-inspired light weight neural network architecture that incorporates local learning and neuromodulation.
We demonstrate the efficacy of our approach on both single task and continual learning setting.
- Score: 4.2903672492917755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to learn continuously from an incoming data stream without
catastrophic forgetting is critical for designing intelligent systems. Many
existing approaches to continual learning rely on stochastic gradient descent
and its variants. However, these algorithms have to implement various
strategies, such as memory buffers or replay, to overcome well-known
shortcomings of stochastic gradient descent methods in terms of stability,
greed, and short-term memory.
To that end, we develop a biologically-inspired light weight neural network
architecture that incorporates local learning and neuromodulation to enable
input processing over data streams and online learning. Next, we address the
challenge of hyperparameter selection for tasks that are not known in advance
by implementing transfer metalearning: using a Bayesian optimization to explore
a design space spanning multiple local learning rules and their
hyperparameters, we identify high performing configurations in classical single
task online learning and we transfer them to continual learning tasks with
task-similarity considerations.
We demonstrate the efficacy of our approach on both single task and continual
learning setting. For the single task learning setting, we demonstrate superior
performance over other local learning approaches on the MNIST, Fashion MNIST,
and CIFAR-10 datasets. Using high performing configurations metalearned in the
single task learning setting, we achieve superior continual learning
performance on Split-MNIST, and Split-CIFAR-10 data as compared with other
memory-constrained learning approaches, and match that of the state-of-the-art
memory-intensive replay-based approaches.
Related papers
- Neuro-mimetic Task-free Unsupervised Online Learning with Continual
Self-Organizing Maps [56.827895559823126]
Self-organizing map (SOM) is a neural model often used in clustering and dimensionality reduction.
We propose a generalization of the SOM, the continual SOM, which is capable of online unsupervised learning under a low memory budget.
Our results, on benchmarks including MNIST, Kuzushiji-MNIST, and Fashion-MNIST, show almost a two times increase in accuracy.
arXiv Detail & Related papers (2024-02-19T19:11:22Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Improving Performance in Continual Learning Tasks using Bio-Inspired
Architectures [4.2903672492917755]
We develop a biologically inspired lightweight neural network architecture that incorporates synaptic plasticity mechanisms and neuromodulation.
Our approach leads to superior online continual learning performance on Split-MNIST, Split-CIFAR-10, and Split-CIFAR-100 datasets.
We further demonstrate the effectiveness of our approach by integrating key design concepts into other backpropagation-based continual learning algorithms.
arXiv Detail & Related papers (2023-08-08T19:12:52Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Center Loss Regularization for Continual Learning [0.0]
In general, neural networks lack the ability to learn different tasks sequentially.
Our approach remembers old tasks by projecting the representations of new tasks close to that of old tasks.
We demonstrate that our approach is scalable, effective, and gives competitive performance compared to state-of-the-art continual learning methods.
arXiv Detail & Related papers (2021-10-21T17:46:44Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Improving the Accuracy of Early Exits in Multi-Exit Architectures via
Curriculum Learning [88.17413955380262]
Multi-exit architectures allow deep neural networks to terminate their execution early in order to adhere to tight deadlines at the cost of accuracy.
We introduce a novel method called Multi-Exit Curriculum Learning that utilizes curriculum learning.
Our method consistently improves the accuracy of early exits compared to the standard training approach.
arXiv Detail & Related papers (2021-04-21T11:12:35Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - SpaceNet: Make Free Space For Continual Learning [15.914199054779438]
We propose a novel architectural-based method referred as SpaceNet for class incremental learning scenario.
SpaceNet trains sparse deep neural networks from scratch in an adaptive way that compresses the sparse connections of each task in a compact number of neurons.
Experimental results show the robustness of our proposed method against catastrophic forgetting old tasks and the efficiency of SpaceNet in utilizing the available capacity of the model.
arXiv Detail & Related papers (2020-07-15T11:21:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.