A comparative evaluation of learned feature descriptors on hybrid
monocular visual SLAM methods
- URL: http://arxiv.org/abs/2104.00085v1
- Date: Wed, 31 Mar 2021 19:56:32 GMT
- Title: A comparative evaluation of learned feature descriptors on hybrid
monocular visual SLAM methods
- Authors: Hudson M. S. Bruno and Esther L. Colombini
- Abstract summary: We compare the performance of hybrid monocular VSLAM methods with different learned feature descriptors.
Experiments conducted on KITTI and Euroc MAV datasets confirm that learned feature descriptors can create more robust VSLAM systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical Visual Simultaneous Localization and Mapping (VSLAM) algorithms can
be easily induced to fail when either the robot's motion or the environment is
too challenging. The use of Deep Neural Networks to enhance VSLAM algorithms
has recently achieved promising results, which we call hybrid methods. In this
paper, we compare the performance of hybrid monocular VSLAM methods with
different learned feature descriptors. To this end, we propose a set of
experiments to evaluate the robustness of the algorithms under different
environments, camera motion, and camera sensor noise. Experiments conducted on
KITTI and Euroc MAV datasets confirm that learned feature descriptors can
create more robust VSLAM systems.
Related papers
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - MixLight: Borrowing the Best of both Spherical Harmonics and Gaussian Models [69.39388799906409]
Existing works estimate illumination by generating illumination maps or regressing illumination parameters.
This paper presents MixLight, a joint model that utilizes the complementary characteristics of SH and SG to achieve a more complete illumination representation.
arXiv Detail & Related papers (2024-04-19T10:17:10Z) - DK-SLAM: Monocular Visual SLAM with Deep Keypoint Learning, Tracking and Loop-Closing [13.50980509878613]
Experimental evaluations on publicly available datasets demonstrate that DK-SLAM outperforms leading traditional and learning based SLAM systems.
Our system employs a Model-Agnostic Meta-Learning (MAML) strategy to optimize the training of keypoint extraction networks.
To mitigate cumulative positioning errors, DK-SLAM incorporates a novel online learning module that utilizes binary features for loop closure detection.
arXiv Detail & Related papers (2024-01-17T12:08:30Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
Latest methods for visual counterfactual explanations (VCE) harness the power of deep generative models to synthesize new examples of high-dimensional images of impressive quality.
It is currently difficult to compare the performance of these VCE methods as the evaluation procedures largely vary and often boil down to visual inspection of individual examples and small scale user studies.
We propose a framework for systematic, quantitative evaluation of the VCE methods and a minimal set of metrics to be used.
arXiv Detail & Related papers (2023-08-11T12:22:37Z) - DH-PTAM: A Deep Hybrid Stereo Events-Frames Parallel Tracking And Mapping System [1.443696537295348]
This paper presents a robust approach for a visual parallel tracking and mapping (PTAM) system that excels in challenging environments.
Our proposed method combines the strengths of heterogeneous multi-modal visual sensors, in a unified reference frame.
Our implementation's research-based Python API is publicly available on GitHub.
arXiv Detail & Related papers (2023-06-02T19:52:13Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - LIFT-SLAM: a deep-learning feature-based monocular visual SLAM method [0.0]
We propose to combine the potential of deep learning-based feature descriptors with the traditional geometry-based VSLAM.
Experiments conducted on KITTI and Euroc datasets show that deep learning can be used to improve the performance of traditional VSLAM systems.
arXiv Detail & Related papers (2021-03-31T20:35:10Z) - A Hybrid Learner for Simultaneous Localization and Mapping [2.1041384320978267]
Simultaneous localization and mapping (SLAM) is used to predict the dynamic motion path of a moving platform.
This work introduces a hybrid learning model that explores beyond feature fusion.
It carries out weight enhancement of the front end feature extractor of the SLAM via mutation of different deep networks' top layers.
The trajectory predictions from independently trained models are amalgamated to refine the location detail.
arXiv Detail & Related papers (2021-01-04T18:41:09Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
We propose a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior.
Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm.
Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.
arXiv Detail & Related papers (2020-11-18T16:40:45Z) - Evolving Deep Convolutional Neural Networks for Hyperspectral Image
Denoising [6.869192200282213]
We propose a novel algorithm to automatically build an optimal Convolutional Neural Network (CNN) to effectively denoise HSIs.
The experiments of the proposed algorithm have been well-designed and compared against the state-of-the-art peer competitors.
arXiv Detail & Related papers (2020-08-15T03:04:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.