Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation
- URL: http://arxiv.org/abs/2305.10223v4
- Date: Tue, 4 Jun 2024 10:52:16 GMT
- Title: Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation
- Authors: Xiaofeng Liu, Jiaxin Gao, Xin Fan, Risheng Liu,
- Abstract summary: Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
- Score: 55.07472635587852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contemporary Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast, achieving commendable results on specific datasets. Nevertheless, these approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios. Insufficient constraints on complex pixel-wise mapping learning lead to overfitting to specific types of noise and artifacts associated with low-light conditions, reducing effectiveness in variable lighting scenarios. To this end, we first propose a method for estimating the noise level in low light images in a quick and accurate way. This facilitates precise denoising, prevents over-smoothing, and adapts to dynamic noise patterns. Subsequently, we devise a Learnable Illumination Interpolator (LII), which employs learnlable interpolation operations between the input and unit vector to satisfy general constraints between illumination and input. Finally, we introduce a self-regularization loss that incorporates intrinsic image properties and essential visual attributes to guide the output towards meeting human visual expectations. Comprehensive experiments validate the competitiveness of our proposed algorithm in both qualitative and quantitative assessments. Notably, our noise estimation method, with linear time complexity and suitable for various denoisers, significantly improves both denoising and enhancement performance. Benefiting from this, our approach achieves a 0.675dB PSNR improvement on the LOL dataset and 0.818dB on the MIT dataset on LLIE task, even compared to supervised methods. The source code is available at \href{https://doi.org/10.5281/zenodo.11463142}{this DOI repository} and the specific code for noise estimation can be found at \href{https://github.com/GoogolplexGoodenough/noise_estimate}{this separate GitHub link}.
Related papers
- Multi-Scale Denoising in the Feature Space for Low-Light Instance Segmentation [2.642212767247493]
Instance segmentation for low-light imagery remains largely unexplored.
Our proposed method implements weighted non-local blocks (wNLB) in the feature extractor.
We introduce additional learnable weights at each layer in order to enhance the network's adaptability to real-world noise characteristics.
arXiv Detail & Related papers (2024-02-28T13:07:16Z) - Instance Segmentation in the Dark [43.85818645776587]
We take a deep look at instance segmentation in the dark and introduce several techniques that substantially boost the low-light inference accuracy.
We propose a novel learning method that relies on an adaptive weighted downsampling layer, a smooth-oriented convolutional block, and disturbance suppression learning.
We capture a real-world low-light instance segmentation dataset comprising over two thousand paired low/normal-light images with instance-level pixel-wise annotations.
arXiv Detail & Related papers (2023-04-27T16:02:29Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - Adaptive Unfolding Total Variation Network for Low-Light Image
Enhancement [6.531546527140475]
Most existing enhancing algorithms in sRGB space only focus on the low visibility problem or suppress the noise under a hypothetical noise level.
We propose an adaptive unfolding total variation network (UTVNet) to approximate the noise level from the real sRGB low-light image.
Experiments on real-world low-light images clearly demonstrate the superior performance of UTVNet over state-of-the-art methods.
arXiv Detail & Related papers (2021-10-03T11:22:17Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
Denoisers trained with synthetic data often fail to cope with the diversity of unknown noises.
Previous image-based method leads to noise overfitting if directly applied to video denoisers.
We propose a general framework for video denoising networks that successfully addresses these challenges.
arXiv Detail & Related papers (2020-07-07T07:19:48Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.