DF^2AM: Dual-level Feature Fusion and Affinity Modeling for RGB-Infrared
Cross-modality Person Re-identification
- URL: http://arxiv.org/abs/2104.00226v1
- Date: Thu, 1 Apr 2021 03:12:56 GMT
- Title: DF^2AM: Dual-level Feature Fusion and Affinity Modeling for RGB-Infrared
Cross-modality Person Re-identification
- Authors: Junhui Yin, Zhanyu Ma, Jiyang Xie, Shibo Nie, Kongming Liang, and Jun
Guo
- Abstract summary: RGB-infrared person re-identification is a challenging task due to the intra-class variations and cross-modality discrepancy.
We propose a Dual-level (i.e., local and global) Feature Fusion (DF2) module by learning attention for discnative feature from local to global manner.
To further mining the relationships between global features from person images, we propose an Affinities Modeling (AM) module.
- Score: 18.152310122348393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: RGB-infrared person re-identification is a challenging task due to the
intra-class variations and cross-modality discrepancy. Existing works mainly
focus on learning modality-shared global representations by aligning image
styles or feature distributions across modalities, while local feature from
body part and relationships between person images are largely neglected. In
this paper, we propose a Dual-level (i.e., local and global) Feature Fusion
(DF^2) module by learning attention for discriminative feature from local to
global manner. In particular, the attention for a local feature is determined
locally, i.e., applying a learned transformation function on itself. Meanwhile,
to further mining the relationships between global features from person images,
we propose an Affinities Modeling (AM) module to obtain the optimal intra- and
inter-modality image matching. Specifically, AM employes intra-class
compactness and inter-class separability in the sample similarities as
supervised information to model the affinities between intra- and
inter-modality samples. Experimental results show that our proposed method
outperforms state-of-the-arts by large margins on two widely used
cross-modality re-ID datasets SYSU-MM01 and RegDB, respectively.
Related papers
- Unifying Visual and Semantic Feature Spaces with Diffusion Models for Enhanced Cross-Modal Alignment [20.902935570581207]
We introduce a Multimodal Alignment and Reconstruction Network (MARNet) to enhance the model's resistance to visual noise.
MARNet includes a cross-modal diffusion reconstruction module for smoothly and stably blending information across different domains.
Experiments conducted on two benchmark datasets, Vireo-Food172 and Ingredient-101, demonstrate that MARNet effectively improves the quality of image information extracted by the model.
arXiv Detail & Related papers (2024-07-26T16:30:18Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
We propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters.
Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-05-22T03:27:46Z) - Multi-modal Gated Mixture of Local-to-Global Experts for Dynamic Image
Fusion [59.19469551774703]
Infrared and visible image fusion aims to integrate comprehensive information from multiple sources to achieve superior performances on various practical tasks.
We propose a dynamic image fusion framework with a multi-modal gated mixture of local-to-global experts.
Our model consists of a Mixture of Local Experts (MoLE) and a Mixture of Global Experts (MoGE) guided by a multi-modal gate.
arXiv Detail & Related papers (2023-02-02T20:06:58Z) - Style-Hallucinated Dual Consistency Learning: A Unified Framework for
Visual Domain Generalization [113.03189252044773]
We propose a unified framework, Style-HAllucinated Dual consistEncy learning (SHADE), to handle domain shift in various visual tasks.
Our versatile SHADE can significantly enhance the generalization in various visual recognition tasks, including image classification, semantic segmentation and object detection.
arXiv Detail & Related papers (2022-12-18T11:42:51Z) - Cross-modal Local Shortest Path and Global Enhancement for
Visible-Thermal Person Re-Identification [2.294635424666456]
We propose the Cross-modal Local Shortest Path and Global Enhancement (CM-LSP-GE) modules,a two-stream network based on joint learning of local and global features.
The experimental results on two typical datasets show that our model is obviously superior to the most state-of-the-art methods.
arXiv Detail & Related papers (2022-06-09T10:27:22Z) - Global-and-Local Collaborative Learning for Co-Salient Object Detection [162.62642867056385]
The goal of co-salient object detection (CoSOD) is to discover salient objects that commonly appear in a query group containing two or more relevant images.
We propose a global-and-local collaborative learning architecture, which includes a global correspondence modeling (GCM) and a local correspondence modeling (LCM)
The proposed GLNet is evaluated on three prevailing CoSOD benchmark datasets, demonstrating that our model trained on a small dataset (about 3k images) still outperforms eleven state-of-the-art competitors trained on some large datasets (about 8k-200k images)
arXiv Detail & Related papers (2022-04-19T14:32:41Z) - MSO: Multi-Feature Space Joint Optimization Network for RGB-Infrared
Person Re-Identification [35.97494894205023]
RGB-infrared cross-modality person re-identification (ReID) task aims to recognize the images of the same identity between the visible modality and the infrared modality.
Existing methods mainly use a two-stream architecture to eliminate the discrepancy between the two modalities in the final common feature space.
We present a novel multi-feature space joint optimization (MSO) network, which can learn modality-sharable features in both the single-modality space and the common space.
arXiv Detail & Related papers (2021-10-21T16:45:23Z) - G$^2$DA: Geometry-Guided Dual-Alignment Learning for RGB-Infrared Person
Re-Identification [3.909938091041451]
RGB-IR person re-identification aims to retrieve person-of-interest between heterogeneous modalities.
This paper presents a Geometry-Guided Dual-Alignment learning framework (G$2$DA) to tackle sample-level modality difference.
arXiv Detail & Related papers (2021-06-15T03:14:31Z) - Domain Private and Agnostic Feature for Modality Adaptive Face
Recognition [10.497190559654245]
This paper proposes a Feature Aggregation Network (FAN), which includes disentangled representation module (DRM), feature fusion module (FFM) and metric penalty learning session.
First, in DRM, twoworks, i.e. domain-private network and domain-agnostic network are specially designed for learning modality features and identity features.
Second, in FFM, the identity features are fused with domain features to achieve cross-modal bi-directional identity feature transformation.
Third, considering that the distribution imbalance between easy and hard pairs exists in cross-modal datasets, the identity preserving guided metric learning with adaptive
arXiv Detail & Related papers (2020-08-10T00:59:42Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
arXiv Detail & Related papers (2020-07-18T03:08:13Z) - RGB-D Salient Object Detection with Cross-Modality Modulation and
Selection [126.4462739820643]
We present an effective method to progressively integrate and refine the cross-modality complementarities for RGB-D salient object detection (SOD)
The proposed network mainly solves two challenging issues: 1) how to effectively integrate the complementary information from RGB image and its corresponding depth map, and 2) how to adaptively select more saliency-related features.
arXiv Detail & Related papers (2020-07-14T14:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.