Nine Potential Pitfalls when Designing Human-AI Co-Creative Systems
- URL: http://arxiv.org/abs/2104.00358v1
- Date: Thu, 1 Apr 2021 09:27:30 GMT
- Title: Nine Potential Pitfalls when Designing Human-AI Co-Creative Systems
- Authors: Daniel Buschek, Lukas Mecke, Florian Lehmann, Hai Dang
- Abstract summary: This position paper examines potential pitfalls on the way towards achieving human-AI co-creation with generative models.
We illustrate each pitfall with examples and suggest ideas for addressing it.
We hope to contribute to a critical and constructive discussion on the roles of humans and AI in co-creative interactions.
- Score: 19.90876596716716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This position paper examines potential pitfalls on the way towards achieving
human-AI co-creation with generative models in a way that is beneficial to the
users' interests. In particular, we collected a set of nine potential pitfalls,
based on the literature and our own experiences as researchers working at the
intersection of HCI and AI. We illustrate each pitfall with examples and
suggest ideas for addressing it. Reflecting on all pitfalls, we discuss and
conclude with implications for future research directions. With this
collection, we hope to contribute to a critical and constructive discussion on
the roles of humans and AI in co-creative interactions, with an eye on related
assumptions and potential side-effects for creative practices and beyond.
Related papers
- Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
Next several decades may well be a turning point for humanity, comparable to the industrial revolution.
Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts.
We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.
arXiv Detail & Related papers (2024-04-06T22:18:31Z) - The Social Impact of Generative AI: An Analysis on ChatGPT [0.7401425472034117]
The rapid development of Generative AI models has sparked heated discussions regarding their benefits, limitations, and associated risks.
Generative models hold immense promise across multiple domains, such as healthcare, finance, and education, to cite a few.
This paper adopts a methodology to delve into the societal implications of Generative AI tools, focusing primarily on the case of ChatGPT.
arXiv Detail & Related papers (2024-03-07T17:14:22Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Assessing AI Impact Assessments: A Classroom Study [14.768235460961876]
Artificial Intelligence Impact Assessments ("AIIAs"), a family of tools that provide structured processes to imagine the possible impacts of a proposed AI system, have become an increasingly popular proposal to govern AI systems.
Recent efforts from government or private-sector organizations have proposed many diverse instantiations of AIIAs, which take a variety of forms ranging from open-ended questionnaires to graded score-cards.
We conduct a classroom study at a large research-intensive university (R1) in an elective course focused on the societal and ethical implications of AI.
We find preliminary evidence that impact assessments can influence participants' perceptions of the potential
arXiv Detail & Related papers (2023-11-19T01:00:59Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
We focus on text summarization, a common NLP task largely overlooked by the responsible AI community.
We conduct a multi-round qualitative analysis of 333 summarization papers from the ACL Anthology published between 2020-2022.
We focus on how, which, and when responsible AI issues are covered, which relevant stakeholders are considered, and mismatches between stated and realized research goals.
arXiv Detail & Related papers (2023-11-18T15:35:36Z) - Anticipating Impacts: Using Large-Scale Scenario Writing to Explore
Diverse Implications of Generative AI in the News Environment [3.660182910533372]
We aim to broaden the perspective and capture the expectations of three stakeholder groups about the potential negative impacts of generative AI.
We apply scenario writing and use participatory foresight to delve into cognitively diverse imaginations of the future.
We conclude by discussing the usefulness of scenario-writing and participatory foresight as a toolbox for generative AI impact assessment.
arXiv Detail & Related papers (2023-10-10T06:59:27Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence.
All of this work is aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI.
In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends.
arXiv Detail & Related papers (2023-02-16T08:59:42Z) - Identifying Ethical Issues in AI Partners in Human-AI Co-Creation [0.7614628596146599]
Human-AI co-creativity involves humans and AI collaborating on a shared creative product as partners.
In many existing co-creative systems, users communicate with the AI using buttons or sliders.
This paper explores the impact of AI-to-human communication on user perception and engagement in co-creative systems.
arXiv Detail & Related papers (2022-04-15T20:41:54Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.