Improved Image Generation via Sparse Modeling
- URL: http://arxiv.org/abs/2104.00464v1
- Date: Thu, 1 Apr 2021 13:52:40 GMT
- Title: Improved Image Generation via Sparse Modeling
- Authors: Roy Ganz and Michael Elad
- Abstract summary: We show that generators can be viewed as manifestations of the Convolutional Sparse Coding (CSC) and its Multi-Layered version (ML-CSC) synthesis processes.
We leverage this observation by explicitly enforcing a sparsifying regularization on appropriately chosen activation layers in the generator.
- Score: 27.66648389933265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interest of the deep learning community in image synthesis has grown
massively in recent years. Nowadays, deep generative methods, and especially
Generative Adversarial Networks (GANs), are leading to state-of-the-art
performance, capable of synthesizing images that appear realistic. While the
efforts for improving the quality of the generated images are extensive, most
attempts still consider the generator part as an uncorroborated "black-box". In
this paper, we aim to provide a better understanding and design of the image
generation process. We interpret existing generators as implicitly relying on
sparsity-inspired models. More specifically, we show that generators can be
viewed as manifestations of the Convolutional Sparse Coding (CSC) and its
Multi-Layered version (ML-CSC) synthesis processes. We leverage this
observation by explicitly enforcing a sparsifying regularization on
appropriately chosen activation layers in the generator, and demonstrate that
this leads to improved image synthesis. Furthermore, we show that the same
rationale and benefits apply to generators serving inverse problems,
demonstrated on the Deep Image Prior (DIP) method.
Related papers
- Active Generation for Image Classification [45.93535669217115]
We propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model.
With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation.
arXiv Detail & Related papers (2024-03-11T08:45:31Z) - Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
We propose a new class of GAN discriminators for semantic image synthesis that generates highly realistic images.
Our model, which we dub DP-SIMS, achieves state-of-the-art results in terms of image quality and consistency with the input label maps on ADE-20K, COCO-Stuff, and Cityscapes.
arXiv Detail & Related papers (2023-12-20T09:39:19Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions.
Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps.
In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models.
arXiv Detail & Related papers (2023-09-02T03:27:20Z) - GH-Feat: Learning Versatile Generative Hierarchical Features from GANs [61.208757845344074]
We show that a generative feature learned from image synthesis exhibits great potentials in solving a wide range of computer vision tasks.
We first train an encoder by considering the pretrained StyleGAN generator as a learned loss function.
The visual features produced by our encoder, termed as Generative Hierarchical Features (GH-Feat), highly align with the layer-wise GAN representations.
arXiv Detail & Related papers (2023-01-12T21:59:46Z) - Hierarchical Semantic Regularization of Latent Spaces in StyleGANs [53.98170188547775]
We propose a Hierarchical Semantic Regularizer (HSR) which aligns the hierarchical representations learnt by the generator to corresponding powerful features learnt by pretrained networks on large amounts of data.
HSR is shown to not only improve generator representations but also the linearity and smoothness of the latent style spaces, leading to the generation of more natural-looking style-edited images.
arXiv Detail & Related papers (2022-08-07T16:23:33Z) - PAGER: Progressive Attribute-Guided Extendable Robust Image Generation [38.484332924924914]
This work presents a generative modeling approach based on successive subspace learning (SSL)
Unlike most generative models in the literature, our method does not utilize neural networks to analyze the underlying source distribution and synthesize images.
The resulting method, called the progressive-guided extendable robust image generative (R) model, has advantages in mathematical transparency, progressive content generation, lower training time, robust performance with fewer training samples, and extendibility to conditional image generation.
arXiv Detail & Related papers (2022-06-01T00:35:42Z) - StyleGAN-induced data-driven regularization for inverse problems [2.5138572116292686]
Recent advances in generative adversarial networks (GANs) have opened up the possibility of generating high-resolution images that were impossible to produce previously.
We develop a framework that utilizes the full potential of a pre-trained StyleGAN2 generator for constructing the prior distribution on the underlying image.
Considering the inverse problems of image inpainting and super-resolution, we demonstrate that the proposed approach is competitive with, and sometimes superior to, state-of-the-art GAN-based image reconstruction methods.
arXiv Detail & Related papers (2021-10-07T22:25:30Z) - BIGRoC: Boosting Image Generation via a Robust Classifier [27.66648389933265]
We propose a general model-agnostic technique for improving the image quality and the distribution fidelity of generated images.
Our method, termed BIGRoC, is based on a post-processing procedure via the guidance of a given robust classifier.
arXiv Detail & Related papers (2021-08-08T18:05:44Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - Generative Hierarchical Features from Synthesizing Images [65.66756821069124]
We show that learning to synthesize images can bring remarkable hierarchical visual features that are generalizable across a wide range of applications.
The visual feature produced by our encoder, termed as Generative Hierarchical Feature (GH-Feat), has strong transferability to both generative and discriminative tasks.
arXiv Detail & Related papers (2020-07-20T18:04:14Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
We propose an Information-Distillation Generative Adrial Network (ID-GAN) for disentanglement learning and high-fidelity synthesis.
Our method learns disentangled representation using VAE-based models, and distills the learned representation with an additional nuisance variable to the separate GAN-based generator for high-fidelity synthesis.
Despite the simplicity, we show that the proposed method is highly effective, achieving comparable image generation quality to the state-of-the-art methods using the disentangled representation.
arXiv Detail & Related papers (2020-01-13T14:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.