BIGRoC: Boosting Image Generation via a Robust Classifier
- URL: http://arxiv.org/abs/2108.03702v1
- Date: Sun, 8 Aug 2021 18:05:44 GMT
- Title: BIGRoC: Boosting Image Generation via a Robust Classifier
- Authors: Roy Ganz and Michael Elad
- Abstract summary: We propose a general model-agnostic technique for improving the image quality and the distribution fidelity of generated images.
Our method, termed BIGRoC, is based on a post-processing procedure via the guidance of a given robust classifier.
- Score: 27.66648389933265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interest of the machine learning community in image synthesis has grown
significantly in recent years, with the introduction of a wide range of deep
generative models and means for training them. Such machines' ultimate goal is
to match the distributions of the given training images and the synthesized
ones. In this work, we propose a general model-agnostic technique for improving
the image quality and the distribution fidelity of generated images, obtained
by any generative model. Our method, termed BIGRoC (boosting image generation
via a robust classifier), is based on a post-processing procedure via the
guidance of a given robust classifier and without a need for additional
training of the generative model. Given a synthesized image, we propose to
update it through projected gradient steps over the robust classifier, in an
attempt to refine its recognition. We demonstrate this post-processing
algorithm on various image synthesis methods and show a significant improvement
of the generated images, both quantitatively and qualitatively.
Related papers
- Active Generation for Image Classification [45.93535669217115]
We propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model.
With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation.
arXiv Detail & Related papers (2024-03-11T08:45:31Z) - Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with
Synthetic Images [37.29348016920314]
We present a new framework leveraging off-the-shelf generative models to generate synthetic training images.
We address class name ambiguity, lack of diversity in naive prompts, and domain shifts.
Our framework consistently enhances recognition model performance with more synthetic data.
arXiv Detail & Related papers (2023-12-04T18:35:27Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions.
Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps.
In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models.
arXiv Detail & Related papers (2023-09-02T03:27:20Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling.
We develop our model, dubbed IRGen, to address the technical challenge of converting an image into a concise sequence of semantic units.
Our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks and two million-scale datasets.
arXiv Detail & Related papers (2023-03-17T17:07:36Z) - Traditional Classification Neural Networks are Good Generators: They are
Competitive with DDPMs and GANs [104.72108627191041]
We show that conventional neural network classifiers can generate high-quality images comparable to state-of-the-art generative models.
We propose a mask-based reconstruction module to make semantic gradients-aware to synthesize plausible images.
We show that our method is also applicable to text-to-image generation by regarding image-text foundation models.
arXiv Detail & Related papers (2022-11-27T11:25:35Z) - DiVAE: Photorealistic Images Synthesis with Denoising Diffusion Decoder [73.1010640692609]
We propose a VQ-VAE architecture model with a diffusion decoder (DiVAE) to work as the reconstructing component in image synthesis.
Our model achieves state-of-the-art results and generates more photorealistic images specifically.
arXiv Detail & Related papers (2022-06-01T10:39:12Z) - PAGER: Progressive Attribute-Guided Extendable Robust Image Generation [38.484332924924914]
This work presents a generative modeling approach based on successive subspace learning (SSL)
Unlike most generative models in the literature, our method does not utilize neural networks to analyze the underlying source distribution and synthesize images.
The resulting method, called the progressive-guided extendable robust image generative (R) model, has advantages in mathematical transparency, progressive content generation, lower training time, robust performance with fewer training samples, and extendibility to conditional image generation.
arXiv Detail & Related papers (2022-06-01T00:35:42Z) - High-Resolution Complex Scene Synthesis with Transformers [6.445605125467574]
coarse-grained synthesis of complex scene images via deep generative models has recently gained popularity.
We present an approach to this task, where the generative model is based on pure likelihood training without additional objectives.
We show that the resulting system is able to synthesize high-quality images consistent with the given layouts.
arXiv Detail & Related papers (2021-05-13T17:56:07Z) - Improved Image Generation via Sparse Modeling [27.66648389933265]
We show that generators can be viewed as manifestations of the Convolutional Sparse Coding (CSC) and its Multi-Layered version (ML-CSC) synthesis processes.
We leverage this observation by explicitly enforcing a sparsifying regularization on appropriately chosen activation layers in the generator.
arXiv Detail & Related papers (2021-04-01T13:52:40Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
We propose an Information-Distillation Generative Adrial Network (ID-GAN) for disentanglement learning and high-fidelity synthesis.
Our method learns disentangled representation using VAE-based models, and distills the learned representation with an additional nuisance variable to the separate GAN-based generator for high-fidelity synthesis.
Despite the simplicity, we show that the proposed method is highly effective, achieving comparable image generation quality to the state-of-the-art methods using the disentangled representation.
arXiv Detail & Related papers (2020-01-13T14:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.