One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search
Space Shrinking
- URL: http://arxiv.org/abs/2104.00597v1
- Date: Thu, 1 Apr 2021 16:29:49 GMT
- Title: One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search
Space Shrinking
- Authors: Minghao Chen, Houwen Peng, Jianlong Fu, Haibin Ling
- Abstract summary: We propose a one-shot neural ensemble architecture search (NEAS) solution that addresses the two challenges.
For the first challenge, we introduce a novel diversity-based metric to guide search space shrinking.
For the second challenge, we enable a new search dimension to learn layer sharing among different models for efficiency purposes.
- Score: 97.60915598958968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite remarkable progress achieved, most neural architecture search (NAS)
methods focus on searching for one single accurate and robust architecture. To
further build models with better generalization capability and performance,
model ensemble is usually adopted and performs better than stand-alone models.
Inspired by the merits of model ensemble, we propose to search for multiple
diverse models simultaneously as an alternative way to find powerful models.
Searching for ensembles is non-trivial and has two key challenges: enlarged
search space and potentially more complexity for the searched model. In this
paper, we propose a one-shot neural ensemble architecture search (NEAS)
solution that addresses the two challenges. For the first challenge, we
introduce a novel diversity-based metric to guide search space shrinking,
considering both the potentiality and diversity of candidate operators. For the
second challenge, we enable a new search dimension to learn layer sharing among
different models for efficiency purposes. The experiments on ImageNet clearly
demonstrate that our solution can improve the supernet's capacity of ranking
ensemble architectures, and further lead to better search results. The
discovered architectures achieve superior performance compared with
state-of-the-arts such as MobileNetV3 and EfficientNet families under aligned
settings. Moreover, we evaluate the generalization ability and robustness of
our searched architecture on the COCO detection benchmark and achieve a 3.1%
improvement on AP compared with MobileNetV3. Codes and models are available at
https://github.com/researchmm/NEAS.
Related papers
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - Pareto-aware Neural Architecture Generation for Diverse Computational
Budgets [94.27982238384847]
Existing methods often perform an independent architecture search process for each target budget.
We propose a Neural Architecture Generator (PNAG) which only needs to be trained once and dynamically produces the optimal architecture for any given budget via inference.
Such a joint search algorithm not only greatly reduces the overall search cost but also improves the results.
arXiv Detail & Related papers (2022-10-14T08:30:59Z) - NASE: Learning Knowledge Graph Embedding for Link Prediction via Neural
Architecture Search [9.634626241415916]
Link prediction is the task of predicting missing connections between entities in the knowledge graph (KG)
Previous work has tried to use Automated Machine Learning (AutoML) to search for the best model for a given dataset.
We propose a novel Neural Architecture Search (NAS) framework for the link prediction task.
arXiv Detail & Related papers (2020-08-18T03:34:09Z) - GOLD-NAS: Gradual, One-Level, Differentiable [100.12492801459105]
We propose a novel algorithm named Gradual One-Level Differentiable Neural Architecture Search (GOLD-NAS)
It introduces a variable resource constraint to one-level optimization so that the weak operators are gradually pruned out from the super-network.
arXiv Detail & Related papers (2020-07-07T10:37:49Z) - Fine-Grained Stochastic Architecture Search [6.277767522867666]
Fine-Grained Architecture Search (FiGS) is a differentiable search method that searches over a much larger set of candidate architectures.
FiGS simultaneously selects and modifies operators in the search space by applying a structured sparse regularization penalty.
We show results across 3 existing search spaces, matching or outperforming the original search algorithms.
arXiv Detail & Related papers (2020-06-17T01:04:14Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators.
In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs.
We propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN.
arXiv Detail & Related papers (2020-06-16T13:27:30Z) - Deep-n-Cheap: An Automated Search Framework for Low Complexity Deep
Learning [3.479254848034425]
We present Deep-n-Cheap -- an open-source AutoML framework to search for deep learning models.
Our framework is targeted for deployment on both benchmark and custom datasets.
Deep-n-Cheap includes a user-customizable complexity penalty which trades off performance with training time or number of parameters.
arXiv Detail & Related papers (2020-03-27T13:00:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.