論文の概要: FESTA: Flow Estimation via Spatial-Temporal Attention for Scene Point
Clouds
- arxiv url: http://arxiv.org/abs/2104.00798v1
- Date: Thu, 1 Apr 2021 23:04:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 13:54:27.942201
- Title: FESTA: Flow Estimation via Spatial-Temporal Attention for Scene Point
Clouds
- Title(参考訳): FESTA:シーンポイント雲の空間的注意による流れの推定
- Authors: Haiyan Wang, Jiahao Pang, Muhammad A. Lodhi, Yingli Tian, Dong Tian
- Abstract要約: シーンフローは、自律運転、ロボットナビゲーション、AR/VRなど、さまざまなアプリケーションにとって重要な3Dシーンのダイナミクスを描いている。
典型的な点雲サンプリングパターンのばらつきと不規則さのため、点雲からシーンフローを抽出することは依然として困難である。
不安定な抽象問題を軽減するために, 注意を伴う空間抽象(SA2)層を提案する。
a temporal abstraction with attention (ta2) layer は、時間領域における注意を正すために提案され、より広い範囲でスケールされた動きの利点をもたらす。
- 参考スコア(独自算出の注目度): 28.899804787744202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene flow depicts the dynamics of a 3D scene, which is critical for various
applications such as autonomous driving, robot navigation, AR/VR, etc.
Conventionally, scene flow is estimated from dense/regular RGB video frames.
With the development of depth-sensing technologies, precise 3D measurements are
available via point clouds which have sparked new research in 3D scene flow.
Nevertheless, it remains challenging to extract scene flow from point clouds
due to the sparsity and irregularity in typical point cloud sampling patterns.
One major issue related to irregular sampling is identified as the randomness
during point set abstraction/feature extraction -- an elementary process in
many flow estimation scenarios. A novel Spatial Abstraction with Attention
(SA^2) layer is accordingly proposed to alleviate the unstable abstraction
problem. Moreover, a Temporal Abstraction with Attention (TA^2) layer is
proposed to rectify attention in temporal domain, leading to benefits with
motions scaled in a larger range. Extensive analysis and experiments verified
the motivation and significant performance gains of our method, dubbed as Flow
Estimation via Spatial-Temporal Attention (FESTA), when compared to several
state-of-the-art benchmarks of scene flow estimation.
- Abstract(参考訳): シーンフローは、自律運転、ロボットナビゲーション、AR/VRなど、さまざまなアプリケーションにとって重要な3Dシーンのダイナミクスを描いている。
従来、シーンフローはRGBの高密度フレームから推定される。
深度センシング技術の発展に伴い、精密な3次元計測は3次元シーンフローの新たな研究の火花となった点雲を通して利用可能である。
それにもかかわらず、典型的な点雲サンプリングパターンの間隔と不規則性のため、点雲からシーンフローを抽出することは依然として困難である。
不規則サンプリングに関する大きな問題のひとつは、多くのフロー推定シナリオにおける基本的なプロセスである、ポイントセットの抽象化/特徴抽出中のランダム性である。
不安定な抽象問題を緩和するために,新しい空間抽象層 (SA^2) を提案する。
さらに,時間領域の注意を正すため,TA^2層が提案され,より広い範囲で動きを拡大する利点がある。
大規模解析および実験により,シーンフロー推定の最先端ベンチマークと比較し,空間的-時間的注意によるフロー推定 (festa) と呼ばれる手法の動機と有意な性能向上を検証した。
関連論文リスト
- PointFlowHop: Green and Interpretable Scene Flow Estimation from
Consecutive Point Clouds [49.7285297470392]
本研究では,PointFlowHopと呼ばれる3次元シーンフローの効率的な推定法を提案する。
ポイントフローホップは2つの連続する点雲を取り、第1点雲の各点の3次元フローベクトルを決定する。
シーンフロー推定タスクを,エゴモーション補償,オブジェクトアソシエーション,オブジェクトワイドモーション推定など,一連のサブタスクに分解する。
論文 参考訳(メタデータ) (2023-02-27T23:06:01Z) - What Matters for 3D Scene Flow Network [44.02710380584977]
点雲からの3次元シーンフロー推定はコンピュータビジョンにおける低レベルな3次元モーション知覚タスクである。
そこで本研究では,初期シーンフロー推定時の逆方向の信頼性検証が可能な,新しい全対全フロー埋め込み層を提案する。
提案したモデルは,FlyingThings3Dデータセットで少なくとも38.2%,KITTI Scene Flowデータセットで24.7%,EPE3Dメトリックで,既存のすべてのメソッドを上回ります。
論文 参考訳(メタデータ) (2022-07-19T09:27:05Z) - RCP: Recurrent Closest Point for Scene Flow Estimation on 3D Point
Clouds [44.034836961967144]
シーンフローや点雲の登録を含む3次元運動推定が注目されている。
最近の手法では、正確な3次元フローを推定するためのコストボリュームを構築するために、ディープニューラルネットワークを使用している。
問題を2つのインターレースステージに分解し、第1段階では3次元フローをポイントワイズに最適化し、第2段階ではリカレントネットワークでグローバルに正規化する。
論文 参考訳(メタデータ) (2022-05-23T04:04:30Z) - Learning Scene Flow in 3D Point Clouds with Noisy Pseudo Labels [71.11151016581806]
そこで本研究では,3次元の3次元動きを点雲からキャプチャするシーンフロー手法を提案する。
提案手法は,最先端の自己教師型アプローチより優れるだけでなく,正確な接地構造を用いた教師型アプローチよりも優れる。
論文 参考訳(メタデータ) (2022-03-23T18:20:03Z) - Residual 3D Scene Flow Learning with Context-Aware Feature Extraction [11.394559627312743]
ユークリッド空間の文脈構造情報を活用するために,新しいコンテキスト対応集合 conv 層を提案する。
また, 遠距離移動に対処するため, 残留流微細化層に明示的な残留流学習構造を提案する。
提案手法は, これまでのすべての成果を, 少なくとも25%以上の知識に上回りながら, 最先端の性能を達成する。
論文 参考訳(メタデータ) (2021-09-10T06:15:18Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
点雲は非秩序であり、その密度は著しく一様ではないため、点雲の3次元運動の推定は困難である。
本稿では,sparse convolution-transformer network (sctn) という新しいアーキテクチャを提案する。
学習した関係に基づく文脈情報が豊富で,対応点の一致に役立ち,シーンフローの推定に有効であることを示す。
論文 参考訳(メタデータ) (2021-05-10T15:16:14Z) - Weakly Supervised Learning of Rigid 3D Scene Flow [81.37165332656612]
本研究では,剛体体として動くエージェント群によって説明できる3次元シーンを多用したデータ駆動シーンフロー推定アルゴリズムを提案する。
4種類の自律運転データセットにおいて,提案手法の有効性と一般化能力を示す。
論文 参考訳(メタデータ) (2021-02-17T18:58:02Z) - Occlusion Guided Scene Flow Estimation on 3D Point Clouds [4.518012967046983]
3次元シーンフロー推定は、環境に与えられた深度や範囲のセンサーを知覚する上で欠かせないツールである。
本稿では,フレーム間のフローとオクルージョンの両方の学習を密に結合する,OGSF-Netと呼ばれる新しいシーンフローアーキテクチャを提案する。
これらの共生が組み合わさって宇宙の流れをより正確に予測できる。
論文 参考訳(メタデータ) (2020-11-30T15:22:03Z) - Scene Flow from Point Clouds with or without Learning [47.03163552693887]
シーンフロー(Scene flow)は、シーンの3次元運動場である。
現在の学習ベースのアプローチは、ポイントクラウドから直接シーンフローを推定することを目指している。
本稿では,点雲からシーンフローを復元する,シンプルで解釈可能な目的関数を提案する。
論文 参考訳(メタデータ) (2020-10-31T17:24:48Z) - Hierarchical Attention Learning of Scene Flow in 3D Point Clouds [28.59260783047209]
本稿では,2つの連続する3次元点雲からのシーンフロー推定の問題について検討する。
隣接フレームにおける点特徴の相関を学習するために, 二重注意を有する新しい階層型ニューラルネットワークを提案する。
実験の結果,提案したネットワークは3次元シーンフロー推定の最先端性能より優れていた。
論文 参考訳(メタデータ) (2020-10-12T14:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。