Spotlighting quantum phase transition in spin-1/2 Ising-Heisenberg
diamond chain employing Measurement-Induced Nonlocality
- URL: http://arxiv.org/abs/2104.00884v1
- Date: Fri, 2 Apr 2021 04:57:02 GMT
- Title: Spotlighting quantum phase transition in spin-1/2 Ising-Heisenberg
diamond chain employing Measurement-Induced Nonlocality
- Authors: S. Bhuvaneswari, R. Muthuganesan, and R. Radha
- Abstract summary: We examine thermal quantum correlations characterized by Measurement-Induced Nonlocality (MIN) in an infinite spin-1/2 Ising-Heisenberg spin chain with Dzyaloshinskii-Moriya interaction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We examine thermal quantum correlations characterized by Measurement-Induced
Nonlocality (MIN) in an infinite spin-1/2 Ising-Heisenberg spin chain with
Dzyaloshinskii-Moriya (DM) interaction. We evaluate MIN analytically in the
thermodynamic limit using the transfer matrix approach and show that the MIN
and its first-order derivative may spotlight the quantum criticality and
quantum phase transition (QPT). We observe that the DM interaction reduces the
role of anisotropy parameter in initiating QPT. Further, the DM interaction
also induces the nonlocality in the system if the spins are unentangled and
greatly enhances the quantum correlations if the spins are correlated. The
impact of the magnetic field and temperature on quantum correlations is also
brought out at a critical point.
Related papers
- Quantum Information Resources in Spin-1 Heisenberg Dimer Systems [0.0]
We explore the quantum information resources within bipartite pure and mixed states of the quantum spin-1 Heisenberg dimer system.
We derive the system's density operator at thermal equilibrium and establish a mathematical framework for analyzing quantum correlation metrics.
arXiv Detail & Related papers (2024-09-12T14:36:21Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Quantitative theory of backscattering in topological HgTe and (Hg,Mn)Te
quantum wells: acceptor states, Kondo effect, precessional dephasing, and
bound magnetic polaron [0.0]
We present the theory and numerical evaluations of the backscattering rate determined by acceptor holes or Mn spins in HgTe and (Hg,Mn)Te quantum wells.
arXiv Detail & Related papers (2022-09-07T16:40:32Z) - First-order transitions in spin chains coupled to quantum baths [0.0]
We show that tailoring the dissipative environment allows to change the features of continuous quantum phase transitions.
We find that spin couplings to local quantum boson baths in the Ohmic regime can drive the transition from the second to the first order even for a low dissipation strength.
arXiv Detail & Related papers (2022-07-27T20:42:08Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Characterizing quantum criticality and steered coherence in the XY-Gamma
chain [0.37498611358320727]
We analytically solve the one-dimensional short-range interacting case with the Jordan-Wigner transformation.
In the gapless phase, an incommensurate spiral order is manifested by the vector-chiral correlations.
We derive explicit scaling forms of the excitation gap near the quantum critical points.
arXiv Detail & Related papers (2022-06-08T15:28:10Z) - Effects of critical correlations on quantum percolation in two
dimensions [0.0]
We consider a two-dimensional tight-binding model that interacts with a background of classical spins in thermal equilibrium.
To capture the salient features of the classical transition, we focus on the strong coupling limit.
We provide evidence that the classical phase transition might induce a delocalization-localization transition in the quantum system at certain energies.
arXiv Detail & Related papers (2022-03-28T18:00:01Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.