HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection
- URL: http://arxiv.org/abs/2104.00902v1
- Date: Fri, 2 Apr 2021 06:34:49 GMT
- Title: HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection
- Authors: Jongyoun Noh, Sanghoon Lee, Bumsub Ham
- Abstract summary: 3D object detection methods exploit either voxel-based or point-based features to represent 3D objects in a scene.
We introduce in this paper a novel single-stage 3D detection method having the merit of both voxel-based and point-based features.
- Score: 39.64891219500416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of 3D object detection, that is, estimating 3D object
bounding boxes from point clouds. 3D object detection methods exploit either
voxel-based or point-based features to represent 3D objects in a scene.
Voxel-based features are efficient to extract, while they fail to preserve
fine-grained 3D structures of objects. Point-based features, on the other hand,
represent the 3D structures more accurately, but extracting these features is
computationally expensive. We introduce in this paper a novel single-stage 3D
detection method having the merit of both voxel-based and point-based features.
To this end, we propose a new convolutional neural network (CNN) architecture,
dubbed HVPR, that integrates both features into a single 3D representation
effectively and efficiently. Specifically, we augment the point-based features
with a memory module to reduce the computational cost. We then aggregate the
features in the memory, semantically similar to each voxel-based one, to obtain
a hybrid 3D representation in a form of a pseudo image, allowing to localize 3D
objects in a single stage efficiently. We also propose an Attentive Multi-scale
Feature Module (AMFM) that extracts scale-aware features considering the sparse
and irregular patterns of point clouds. Experimental results on the KITTI
dataset demonstrate the effectiveness and efficiency of our approach, achieving
a better compromise in terms of speed and accuracy.
Related papers
- 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - Surface-biased Multi-Level Context 3D Object Detection [1.9723551683930771]
This work addresses the object detection task in 3D point clouds using a highly efficient, surface-biased, feature extraction method (wang2022rbgnet)
We propose a 3D object detector that extracts accurate feature representations of object candidates and leverages self-attention on point patches, object candidates, and on the global scene in 3D scene.
arXiv Detail & Related papers (2023-02-13T11:50:04Z) - CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds [55.44204039410225]
We present a novel two-stage fully sparse convolutional 3D object detection framework, named CAGroup3D.
Our proposed method first generates some high-quality 3D proposals by leveraging the class-aware local group strategy on the object surface voxels.
To recover the features of missed voxels due to incorrect voxel-wise segmentation, we build a fully sparse convolutional RoI pooling module.
arXiv Detail & Related papers (2022-10-09T13:38:48Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Voxel-based 3D Detection and Reconstruction of Multiple Objects from a
Single Image [22.037472446683765]
We learn a regular grid of 3D voxel features from the input image which is aligned with 3D scene space via a 3D feature lifting operator.
Based on the 3D voxel features, our novel CenterNet-3D detection head formulates the 3D detection as keypoint detection in the 3D space.
We devise an efficient coarse-to-fine reconstruction module, including coarse-level voxelization and a novel local PCA-SDF shape representation.
arXiv Detail & Related papers (2021-11-04T18:30:37Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
We leverage a 3D fully convolutional network for 3D point clouds.
We propose a novel and practical learning mechanism that densely predicts both a detection score and a description feature for each 3D point.
Our method achieves state-of-the-art results in both indoor and outdoor scenarios.
arXiv Detail & Related papers (2020-03-06T12:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.