論文の概要: A Detector-oblivious Multi-arm Network for Keypoint Matching
- arxiv url: http://arxiv.org/abs/2104.00947v3
- Date: Sat, 1 Jun 2024 07:55:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 00:04:47.851174
- Title: A Detector-oblivious Multi-arm Network for Keypoint Matching
- Title(参考訳): キーポイントマッチングのための検出・公開マルチアームネットワーク
- Authors: Xuelun Shen, Qian Hu, Xin Li, Cheng Wang,
- Abstract要約: 地域重なりと深度を学習するマルチアームネットワーク(MAN)を提案する。
屋外および屋内のデータセットを用いた総合的な実験により,提案手法が最先端の手法より優れていることが示された。
- 参考スコア(独自算出の注目度): 14.051194519908455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a matching network to establish point correspondence between images. We propose a Multi-Arm Network (MAN) to learn region overlap and depth, which can greatly improve the keypoint matching robustness while bringing little computational cost during the inference stage. Another design that makes this framework different from many existing learning based pipelines that require re-training when a different keypoint detector is adopted, our network can directly work with different keypoint detectors without such a time-consuming re-training process. Comprehensive experiments conducted on outdoor and indoor datasets demonstrated that our proposed MAN outperforms state-of-the-art methods.
- Abstract(参考訳): 本稿では,画像間の点対応を確立するためのマッチングネットワークを提案する。
本研究では,領域の重なりと深さを学習するマルチArm Network(MAN)を提案する。
このフレームワークを、異なるキーポイント検出器を採用する際に再トレーニングを必要とする既存の学習ベースパイプラインとは異なるものにする別の設計では、ネットワークはそのような時間を要する再トレーニングプロセスなしで、異なるキーポイント検出器と直接連携することができる。
屋外および屋内のデータセットを用いた総合的な実験により,提案手法が最先端の手法より優れていることが示された。
関連論文リスト
- Deep Internal Learning: Deep Learning from a Single Input [88.59966585422914]
多くの場合、手元にある入力からネットワークをトレーニングする価値がある。
これは、トレーニングデータが少なく、多様性が大きい多くの信号および画像処理問題に特に関係している。
本研究の目的は,この2つの重要な方向に向けて,過去数年間に提案されてきた深層学習技術について報告することである。
論文 参考訳(メタデータ) (2023-12-12T16:48:53Z) - CMFDFormer: Transformer-based Copy-Move Forgery Detection with Continual
Learning [52.72888626663642]
コピーモーブ偽造検出は、疑わしい偽画像中の重複領域を検出することを目的としている。
深層学習に基づく複写偽造検出手法が最上位にある。
CMFDFormer という名称の Transformer-style copy-move forgery ネットワークを提案する。
また、CMFDFormerが新しいタスクを処理できるように、新しいPCSD連続学習フレームワークを提供する。
論文 参考訳(メタデータ) (2023-11-22T09:27:46Z) - The Wyner Variational Autoencoder for Unsupervised Multi-Layer Wireless
Fingerprinting [6.632671046812309]
識別性能を向上させるための多層署名を共同で検討する多層フィンガープリントフレームワークを提案する。
従来の手法とは対照的に,近年のマルチビュー機械学習のパラダイムを活用して,マルチレイヤ機能間で共有されるデバイス情報を,監督なしでクラスタ化することができる。
実験の結果,提案手法は教師なしと教師なしの両方の設定において,最先端のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-03-28T10:05:06Z) - Keypoints Tracking via Transformer Networks [0.0]
本稿では,トランスフォーマネットワークを用いた画像間におけるスパースキーポイントの追跡に関する先駆的な研究を提案する。
実時間およびロバストなキーポイントトラッキングの特定の事例について検討する。
提案手法は, 粗いマッチングと, キーポイントの対応の微妙な局所化の2段階からなる。
論文 参考訳(メタデータ) (2022-03-24T05:06:46Z) - BatchFormer: Learning to Explore Sample Relationships for Robust
Representation Learning [93.38239238988719]
本稿では,各ミニバッチからサンプル関係を学習可能なディープニューラルネットワークを提案する。
BatchFormerは各ミニバッチのバッチ次元に適用され、トレーニング中のサンプル関係を暗黙的に探索する。
我々は10以上のデータセットに対して広範な実験を行い、提案手法は異なるデータ不足アプリケーションにおいて大幅な改善を実現する。
論文 参考訳(メタデータ) (2022-03-03T05:31:33Z) - Parallel Multi-Scale Networks with Deep Supervision for Hand Keypoint
Detection [3.1781111932870716]
マルチスケールディープスーパービジョンネットワーク(P-MSDSNet)という新しいCNNモデルを提案する。
P-MSDSNetは、層から層への適応的な特徴伝達のための注意マップを作成するために、深い監督の下で異なるスケールで特徴マップを学習する。
P-MSDSNetは,パラメータの少ないベンチマークデータセットにおいて,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-12-19T22:38:16Z) - Experience feedback using Representation Learning for Few-Shot Object
Detection on Aerial Images [2.8560476609689185]
大規模なリモートセンシング画像データセットであるDOTAを用いて,本手法の性能評価を行った。
特に、数発のオブジェクト検出タスクの固有の弱点を強調します。
論文 参考訳(メタデータ) (2021-09-27T13:04:53Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
歩行者検出と識別サブタスクを1つのネットワークで処理するワンステップ方式を開発しました。
現在のワンステップアプローチには2つの大きな課題があります。
本稿では,これらの問題を解決するために,分離メモリ強化ネットワーク(DMRNet)を提案する。
論文 参考訳(メタデータ) (2021-02-22T06:19:45Z) - Suppress and Balance: A Simple Gated Network for Salient Object
Detection [89.88222217065858]
両問題を同時に解くための単純なゲートネットワーク(GateNet)を提案する。
多レベルゲートユニットの助けを借りて、エンコーダからの貴重なコンテキスト情報をデコーダに最適に送信することができる。
さらに,提案したFold-ASPP操作(Fold-ASPP)に基づくアトラス空間ピラミッドプーリングを用いて,様々なスケールのサリアンオブジェクトを正確に位置決めする。
論文 参考訳(メタデータ) (2020-07-16T02:00:53Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z) - Finding the Optimal Network Depth in Classification Tasks [10.248235276871258]
複数の分類器ヘッドを用いた軽量ニューラルネットワークの高速エンドツーエンド学習法を開発した。
モデルが各ヘッドの重要性を決定することによって、ネットワークの不要なコンポーネントを検出し、取り除くことができる。
論文 参考訳(メタデータ) (2020-04-17T11:08:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。