Glioma Prognosis: Segmentation of the Tumor and Survival Prediction
using Shape, Geometric and Clinical Information
- URL: http://arxiv.org/abs/2104.00980v1
- Date: Fri, 2 Apr 2021 10:49:05 GMT
- Title: Glioma Prognosis: Segmentation of the Tumor and Survival Prediction
using Shape, Geometric and Clinical Information
- Authors: Mobarakol Islam, V Jeya Maria Jose, Hongliang Ren
- Abstract summary: We exploit a convolutional neural network (CNN) with hypercolumn technique to segment tumor from healthy brain tissue.
Our model achieves a mean dice accuracy of 87.315%, 77.04% and 70.22% for the whole tumor, tumor core and enhancing tumor respectively.
- Score: 13.822139791199106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmentation of brain tumor from magnetic resonance imaging (MRI) is a vital
process to improve diagnosis, treatment planning and to study the difference
between subjects with tumor and healthy subjects. In this paper, we exploit a
convolutional neural network (CNN) with hypercolumn technique to segment tumor
from healthy brain tissue. Hypercolumn is the concatenation of a set of vectors
which form by extracting convolutional features from multiple layers. Proposed
model integrates batch normalization (BN) approach with hypercolumn. BN layers
help to alleviate the internal covariate shift during stochastic gradient
descent (SGD) training by zero-mean and unit variance of each mini-batch.
Survival Prediction is done by first extracting features(Geometric, Fractal,
and Histogram) from the segmented brain tumor data. Then, the number of days of
overall survival is predicted by implementing regression on the extracted
features using an artificial neural network (ANN). Our model achieves a mean
dice score of 89.78%, 82.53% and 76.54% for the whole tumor, tumor core and
enhancing tumor respectively in segmentation task and 67.90% in overall
survival prediction task with the validation set of BraTS 2018 challenge. It
obtains a mean dice accuracy of 87.315%, 77.04% and 70.22% for the whole tumor,
tumor core and enhancing tumor respectively in the segmentation task and a
46.80% in overall survival prediction task in the BraTS 2018 test data set.
Related papers
- Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Multi-class Brain Tumor Segmentation using Graph Attention Network [3.3635982995145994]
This work introduces an efficient brain tumor summation model by exploiting the advancement in MRI and graph neural networks (GNNs)
The model represents the volumetric MRI as a region adjacency graph (RAG) and learns to identify the type of tumors through a graph attention network (GAT)
arXiv Detail & Related papers (2023-02-11T04:30:40Z) - Improving Deep Learning Models for Pediatric Low-Grade Glioma Tumors
Molecular Subtype Identification Using 3D Probability Distributions of Tumor
Location [0.0]
CNN models for pLGG subtype identification rely on tumor segmentation.
We propose to augment the CNN models using tumor location probability in MRI data.
We achieved statistically significant improvements by incorporating tumor location into the CNN models.
arXiv Detail & Related papers (2022-10-13T18:30:11Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric
MRI [0.0]
We propose a new aggregation of two deep learning frameworks namely, DeepSeg and nnU-Net for automatic glioblastoma recognition in pre-operative mpMRI.
Our ensemble method obtains Dice similarity scores of 92.00, 87.33, and 84.10 and Hausdorff Distances of 3.81, 8.91, and 16.02 for the enhancing tumor, tumor core, and whole tumor regions.
arXiv Detail & Related papers (2021-12-13T10:51:20Z) - Brain Tumor Segmentation and Survival Prediction using Automatic Hard
mining in 3D CNN Architecture [0.30098583327398537]
We utilize 3-D fully convolutional neural networks (CNN) to segment gliomas and its constituents from multimodal Magnetic Resonance Images (MRI)
The architecture uses dense connectivity patterns to reduce the number of weights and residual connections and is 0.448 with weights obtained from training this model with BraTS 2018 dataset.
Hard mining is done during training to train for the difficult cases of segmentation tasks by increasing the dice similarity coefficient (DSC) threshold to choose the hard cases as epoch increases.
arXiv Detail & Related papers (2021-01-05T14:34:16Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
Our H2NF-Net uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions.
We trained and evaluated our model on the Multimodal Brain Tumor Challenge (BraTS) 2020 dataset.
Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
arXiv Detail & Related papers (2020-12-30T20:44:55Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
We automate and standardize the task of brain tumor segmentation with U-net like neural networks.
Two independent ensembles of models were trained, and each produced a brain tumor segmentation map.
Our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff 95% of 20.4, 6.7 and 19.5mm on the final test dataset.
arXiv Detail & Related papers (2020-10-30T14:36:10Z) - Enhancing MRI Brain Tumor Segmentation with an Additional Classification
Network [0.0]
We propose a novel training method that enhances the segmentation results by adding an additional classification branch to the network.
The whole network was trained end-to-end on the Multimodal Brain Tumor Challenge (BraTS) 2020 training dataset.
arXiv Detail & Related papers (2020-09-25T10:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.