Site-dependent selection of atoms for homogeneous atom-cavity coupling
- URL: http://arxiv.org/abs/2104.01201v1
- Date: Fri, 2 Apr 2021 19:05:19 GMT
- Title: Site-dependent selection of atoms for homogeneous atom-cavity coupling
- Authors: Baochen Wu, Graham P. Greve, Chengyi Luo, James K. Thompson
- Abstract summary: We select atoms by imposing an AC Stark shift on the ground state hyperfine microwave transition frequency with light injected into the cavity.
We induce a spin flip with microwaves that are resonant for atoms that are near maximally coupled to the cavity mode of interest, after which, we use radiation pressure forces to remove from the cavity all the atoms in the initial spin state.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We demonstrate a method to obtain homogeneous atom-cavity coupling by
selecting and keeping $^{87}$Rb atoms that are near maximally coupled to the
cavity's standing-wave mode. We select atoms by imposing an AC Stark shift on
the ground state hyperfine microwave transition frequency with light injected
into the cavity. We then induce a spin flip with microwaves that are resonant
for atoms that are near maximally coupled to the cavity mode of interest, after
which, we use radiation pressure forces to remove from the cavity all the atoms
in the initial spin state. Achieving greater homogeneity in the atom-cavity
coupling will potentially enhance entanglement generation, intracavity driving
of atomic transitions, cavity-optomechanics, and quantum simulations. This
approach can easily be extended to other atomic species with microwave or
optical transitions.
Related papers
- Continuous cavity-QED with an atomic beam [4.318157997343946]
Atoms coupled to cavities provide an exciting playground for the study of fundamental interactions of atoms mediated through a common channel.
Many of the applications of cavity-QED and cold-atom experiments more broadly, suffer from limitations caused by the transient nature of an atomic loading cycle.
We present a machine designed to produce a continuous flux of collimated atoms that traverse an optical cavity.
arXiv Detail & Related papers (2024-07-26T11:13:53Z) - Coupled states of cold 174-Yb atoms in a high-finesse cavity [0.0]
We experimentally and theoretically study the formation of dressed states emerging from strong collective coupling of the narrow intercombination line of Yb atoms to a single mode of a high-finesse optical cavity.
arXiv Detail & Related papers (2024-04-18T13:27:42Z) - Cavity Sub- and Superradiance Enhanced Ramsey Spectroscopy [0.0]
Ramsey spectroscopy in large, dense ensembles of ultra-cold atoms trapped in optical lattices suffers from dipole-dipole interaction induced shifts and collective superradiance limiting its precision and accuracy.
We propose a novel geometry implementing fast signal readout with minimal heating for large atom numbers at lower densities via an optical cavity operated in the weak single atom but strong collective coupling regime.
arXiv Detail & Related papers (2022-01-21T14:57:35Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Cavity driven Rabi oscillations between Rydberg states of atoms trapped
on a superconducting atom chip [0.0]
Hybrid quantum systems involving cold atoms and microwave resonators can enable infinite-range interactions.
We report on the realization of coherent coupling of a Rydberg transition of ultracold atoms trapped on an integrated superconducting atom chip to the microwave field of an on-chip coplanar waveguide resonator.
arXiv Detail & Related papers (2021-05-11T16:43:07Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Multimode-polariton superradiance via Floquet engineering [55.41644538483948]
We consider an ensemble of ultracold bosonic atoms within a near-planar cavity, driven by a far detuned laser.
We show that a strong, dispersive atom-photon coupling can be reached for many transverse cavity modes at once.
The resulting Floquet polaritons involve a superposition of a set of cavity modes with a density of excitation of the atomic cloud.
arXiv Detail & Related papers (2020-11-24T19:00:04Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Waveguide Quantum Electrodynamics with Giant Superconducting Artificial
Atoms [40.456646238780195]
We employ an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations.
Our realization of giant atoms enables tunable atom-waveguide couplings with large on-off ratios and a coupling spectrum that can be engineered by device design.
arXiv Detail & Related papers (2019-12-27T16:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.