Optimal design of a superconducting transmon qubit with tapered wiring
- URL: http://arxiv.org/abs/2104.01544v1
- Date: Sun, 4 Apr 2021 06:13:14 GMT
- Title: Optimal design of a superconducting transmon qubit with tapered wiring
- Authors: John M. Martinis
- Abstract summary: formulas can thus be used to precisely predict loss and optimize the qubit layout.
A significant fraction of surface loss comes from the small wire that connects the Josephson junction to the qubit capacitor.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analytical formulas are presented for simplified but useful qubit geometries
that predict surface dielectric loss when its thickness is much less than the
metal thickness, the limiting case needed for real devices. These formulas can
thus be used to precisely predict loss and optimize the qubit layout.
Surprisingly, a significant fraction of surface loss comes from the small wire
that connects the Josephson junction to the qubit capacitor. Tapering this wire
is shown to significantly lower its loss. Also predicted are the size and
density of the two-level state (TLS) spectrum from individual surface
dissipation sites.
Related papers
- Wiring surface loss of a superconducting transmon qubit [0.0]
We show that more than 50% of surface loss in transmon qubits can originated from Josephson junctions wiring.
We fabricate six tunable floating transmon qubits and experimentally demonstrate up to 20% improvement in qubit quality factor by wiring design optimization.
arXiv Detail & Related papers (2023-11-28T13:59:41Z) - Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction [60.95625458395291]
In computed tomography (CT) the forward model consists of a linear transform followed by an exponential nonlinearity based on the attenuation of light according to the Beer-Lambert Law.
We show that this approach reduces metal artifacts compared to a commercial reconstruction of a human skull with metal crowns.
arXiv Detail & Related papers (2023-10-06T00:47:57Z) - Optimal baseline exploitation in vertical dark-matter detectors based on
atom interferometry [50.06952271801328]
Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final planning stages or already under construction.
We show that resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal, shot-noise limited, sensitivity if their height constitutes 20% of the available baseline.
arXiv Detail & Related papers (2023-09-08T08:38:24Z) - Disentangling Losses in Tantalum Superconducting Circuits [40.00209231119813]
Recently discovered tantalum-based qubits exhibit record lifetimes exceeding 0.3 ms.
By studying the dependence of loss on temperature, microwave photon number, and device geometry, we quantify materials-related losses.
With four different surface conditions, we quantitatively extract the linear absorption associated with different surface TLS sources.
Finally, we quantify the impact of the chemical processing at single photon powers, the relevant conditions for qubit device performance.
arXiv Detail & Related papers (2023-01-19T02:02:37Z) - Shape optimization of superconducting transmon qubit for low surface
dielectric loss [1.1228750845630484]
We present the shape optimization approach for reducing Surface dielectric loss in transmon qubit.
The capacitor pad and junction wire of the transmon qubit are shaped as spline curves and optimized through the combination of the finite-element method and global optimization algorithm.
As a result, the TLS-limited quality factor and corresponding $T_1$ were increased by approximately 21.6%.
arXiv Detail & Related papers (2022-11-25T15:03:43Z) - Precision measurement of the microwave dielectric loss of sapphire in
the quantum regime with parts-per-billion sensitivity [50.591267188664666]
Dielectric loss is known to limit state-of-the-art superconducting qubit lifetimes.
Recent experiments imply upper bounds on bulk dielectric loss tangents on the order of $100$ parts-per-billion.
We have devised a measurement method capable of separating and resolving bulk dielectric loss with a sensitivity at the level of $5$ parts per billion.
arXiv Detail & Related papers (2022-06-29T00:14:11Z) - Compact vacuum gap transmon qubits: Selective and sensitive probes for
superconductor surface losses [0.0]
State-of-the-art transmon qubits rely on large capacitors which systematically improves their coherence.
We present transmon qubits with sizes as low as 36$ times $39$ mu$m$2$ with $gtrsim$100 nm wide vacuum gap capacitors.
arXiv Detail & Related papers (2022-06-28T16:02:08Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - Optimizing Mode Connectivity via Neuron Alignment [84.26606622400423]
Empirically, the local minima of loss functions can be connected by a learned curve in model space along which the loss remains nearly constant.
We propose a more general framework to investigate effect of symmetry on landscape connectivity by accounting for the weight permutations of networks being connected.
arXiv Detail & Related papers (2020-09-05T02:25:23Z) - Merged-element transmon [0.0]
We report the implementation of the mergemon using a sputtered Nb--amorphous-Si--Nb trilayer film.
The frequency of the readout resonator, capacitively coupled to the mergemon, exhibits a qubit-state dependent shift in the low power regime.
We expect the mergemon to achieve high coherence in relatively small device dimensions when implemented using a low-loss, epially-grown, and lattice-matched trilayer.
arXiv Detail & Related papers (2020-08-17T22:26:37Z) - Microscopic Relaxation Channels in Materials for Superconducting Qubits [76.84500123816078]
We show correlations between $T_$ and grain size, enhanced oxygen diffusion along grain boundaries, and concentration of suboxides near the surface.
Physical mechanisms connect these microscopic properties to residual surface resistance and $T_$ through losses arising from the grain boundaries and from defects in the suboxides.
This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.
arXiv Detail & Related papers (2020-04-06T18:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.