A Task-Motion Planning Framework Using Iteratively Deepened AND/OR Graph
Networks
- URL: http://arxiv.org/abs/2104.01549v1
- Date: Sun, 4 Apr 2021 07:06:52 GMT
- Title: A Task-Motion Planning Framework Using Iteratively Deepened AND/OR Graph
Networks
- Authors: Hossein Karami and Antony Thomas and Fulvio Mastrogiovanni
- Abstract summary: We present an approach for Task-Motion Planning (TMP) using Iterative Deepened AND/OR Graph Networks (TMP-IDAN)
TMP-IDAN uses an AND/OR graph network based novel abstraction for compactly representing the task-level states and actions.
We validate our approach and evaluate its capabilities using a Baxter robot and a state-of-the-art robotics simulator.
- Score: 1.3535770763481902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an approach for Task-Motion Planning (TMP) using Iterative
Deepened AND/OR Graph Networks (TMP-IDAN) that uses an AND/OR graph network
based novel abstraction for compactly representing the task-level states and
actions. While retrieving a target object from clutter, the number of object
re-arrangements required to grasp the target is not known ahead of time. To
address this challenge, in contrast to traditional AND/OR graph-based planners,
we grow the AND/OR graph online until the target grasp is feasible and thereby
obtain a network of AND/OR graphs. The AND/OR graph network allows faster
computations than traditional task planners. We validate our approach and
evaluate its capabilities using a Baxter robot and a state-of-the-art robotics
simulator in several challenging non-trivial cluttered table-top scenarios. The
experiments show that our approach is readily scalable to increasing number of
objects and different degrees of clutter.
Related papers
- VeriGraph: Scene Graphs for Execution Verifiable Robot Planning [33.8868315479384]
We propose VeriGraph, a framework that integrates vision-language models (VLMs) for robotic planning while verifying action feasibility.
VeriGraph employs scene graphs as an intermediate representation, capturing key objects and spatial relationships to improve plan verification and refinement.
Our approach significantly enhances task completion rates across diverse manipulation scenarios, outperforming baseline methods by 58% for language-based tasks and 30% for image-based tasks.
arXiv Detail & Related papers (2024-11-15T18:59:51Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural
Networks [16.455234748896157]
GraphPrompt is a novel pre-training and prompting framework on graphs.
It unifies pre-training and downstream tasks into a common task template.
It also employs a learnable prompt to assist a downstream task in locating the most relevant knowledge from the pre-train model.
arXiv Detail & Related papers (2023-02-16T02:51:38Z) - ReVoLT: Relational Reasoning and Voronoi Local Graph Planning for
Target-driven Navigation [1.0896567381206714]
Embodied AI is an inevitable trend that emphasizes the interaction between intelligent entities and the real world.
Recent works focus on exploiting layout relationships by graph neural networks (GNNs)
We decouple this task and propose ReVoLT, a hierarchical framework.
arXiv Detail & Related papers (2023-01-06T05:19:56Z) - Sequential Manipulation Planning on Scene Graph [90.28117916077073]
We devise a 3D scene graph representation, contact graph+ (cg+), for efficient sequential task planning.
Goal configurations, naturally specified on contact graphs, can be produced by a genetic algorithm with an optimization method.
A task plan is then succinct by computing the Graph Editing Distance (GED) between the initial contact graphs and the goal configurations, which generates graph edit operations corresponding to possible robot actions.
arXiv Detail & Related papers (2022-07-10T02:01:33Z) - Arch-Graph: Acyclic Architecture Relation Predictor for
Task-Transferable Neural Architecture Search [96.31315520244605]
Arch-Graph is a transferable NAS method that predicts task-specific optimal architectures.
We show Arch-Graph's transferability and high sample efficiency across numerous tasks.
It is able to find top 0.16% and 0.29% architectures on average on two search spaces under the budget of only 50 models.
arXiv Detail & Related papers (2022-04-12T16:46:06Z) - Learning to Search in Task and Motion Planning with Streams [20.003445874753233]
Task and motion planning problems in robotics combine symbolic planning over discrete task variables with motion optimization over continuous state and action variables.
We propose a geometrically informed symbolic planner that expands the set of objects and facts in a best-first manner.
We apply our algorithm on a 7DOF robotic arm in block-stacking manipulation tasks.
arXiv Detail & Related papers (2021-11-25T15:58:31Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.