Improving Pretrained Models for Zero-shot Multi-label Text
Classification through Reinforced Label Hierarchy Reasoning
- URL: http://arxiv.org/abs/2104.01666v1
- Date: Sun, 4 Apr 2021 19:14:09 GMT
- Title: Improving Pretrained Models for Zero-shot Multi-label Text
Classification through Reinforced Label Hierarchy Reasoning
- Authors: Hui Liu, Danqing Zhang, Bing Yin, Xiaodan Zhu
- Abstract summary: Exploiting label hierarchies has become a promising approach to tackling the zero-shot multi-label text classification problem.
We propose a Reinforced Label Hierarchy Reasoning (RLHR) approach to encourage interdependence among labels in the hierarchies during training.
- Score: 18.531022315325583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploiting label hierarchies has become a promising approach to tackling the
zero-shot multi-label text classification (ZS-MTC) problem. Conventional
methods aim to learn a matching model between text and labels, using a graph
encoder to incorporate label hierarchies to obtain effective label
representations \cite{rios2018few}. More recently, pretrained models like BERT
\cite{devlin2018bert} have been used to convert classification tasks into a
textual entailment task \cite{yin-etal-2019-benchmarking}. This approach is
naturally suitable for the ZS-MTC task. However, pretrained models are
underexplored in the existing work because they do not generate individual
vector representations for text or labels, making it unintuitive to combine
them with conventional graph encoding methods. In this paper, we explore to
improve pretrained models with label hierarchies on the ZS-MTC task. We propose
a Reinforced Label Hierarchy Reasoning (RLHR) approach to encourage
interdependence among labels in the hierarchies during training. Meanwhile, to
overcome the weakness of flat predictions, we design a rollback algorithm that
can remove logical errors from predictions during inference. Experimental
results on three real-life datasets show that our approach achieves better
performance and outperforms previous non-pretrained methods on the ZS-MTC task.
Related papers
- Rank-Aware Negative Training for Semi-Supervised Text Classification [3.105629960108712]
Semi-supervised text classification-based paradigms (SSTC) typically employ the spirit of self-training.
This paper presents a Rank-aware Negative Training (RNT) framework to address SSTC in learning with noisy label manner.
arXiv Detail & Related papers (2023-06-13T08:41:36Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
Few-shot adaptation methods do not fare well in the taxonomic open set (TOS) setting.
We propose a prompt tuning technique that calibrates the hierarchical consistency of model predictions.
A new Prompt Tuning for Hierarchical Consistency (ProTeCt) technique is then proposed to calibrate classification across label set granularities.
arXiv Detail & Related papers (2023-06-04T02:55:25Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
Multi-label recognition (MLR) with incomplete labels is very challenging.
Recent works strive to explore the image-to-label correspondence in the vision-language model, ie, CLIP, to compensate for insufficient annotations.
We advocate remedying the deficiency of label supervision for the MLR with incomplete labels by deriving a structured semantic prior.
arXiv Detail & Related papers (2023-03-23T12:39:20Z) - TagRec++: Hierarchical Label Aware Attention Network for Question
Categorization [0.3683202928838613]
Online learning systems organize the content according to a well defined taxonomy of hierarchical nature.
The task of categorizing inputs to the hierarchical labels is usually cast as a flat multi-class classification problem.
We formulate the task as a dense retrieval problem to retrieve the appropriate hierarchical labels for each content.
arXiv Detail & Related papers (2022-08-10T05:08:37Z) - Self-Adaptive Label Augmentation for Semi-supervised Few-shot
Classification [121.63992191386502]
Few-shot classification aims to learn a model that can generalize well to new tasks when only a few labeled samples are available.
We propose a semi-supervised few-shot classification method that assigns an appropriate label to each unlabeled sample by a manually defined metric.
A major novelty of SALA is the task-adaptive metric, which can learn the metric adaptively for different tasks in an end-to-end fashion.
arXiv Detail & Related papers (2022-06-16T13:14:03Z) - Transductive CLIP with Class-Conditional Contrastive Learning [68.51078382124331]
We propose Transductive CLIP, a novel framework for learning a classification network with noisy labels from scratch.
A class-conditional contrastive learning mechanism is proposed to mitigate the reliance on pseudo labels.
ensemble labels is adopted as a pseudo label updating strategy to stabilize the training of deep neural networks with noisy labels.
arXiv Detail & Related papers (2022-06-13T14:04:57Z) - Enhancing Label Correlation Feedback in Multi-Label Text Classification
via Multi-Task Learning [6.1538971100140145]
We introduce a novel approach with multi-task learning to enhance label correlation feedback.
We propose two auxiliary label co-occurrence prediction tasks to enhance label correlation learning.
arXiv Detail & Related papers (2021-06-06T12:26:14Z) - Label Confusion Learning to Enhance Text Classification Models [3.0251266104313643]
Label Confusion Model (LCM) learns label confusion to capture semantic overlap among labels.
LCM can generate a better label distribution to replace the original one-hot label vector.
experiments on five text classification benchmark datasets reveal the effectiveness of LCM for several widely used deep learning classification models.
arXiv Detail & Related papers (2020-12-09T11:34:35Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z) - Multi-Label Text Classification using Attention-based Graph Neural
Network [0.0]
A graph attention network-based model is proposed to capture the attentive dependency structure among the labels.
The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
arXiv Detail & Related papers (2020-03-22T17:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.