Self-Adaptive Label Augmentation for Semi-supervised Few-shot
Classification
- URL: http://arxiv.org/abs/2206.08150v1
- Date: Thu, 16 Jun 2022 13:14:03 GMT
- Title: Self-Adaptive Label Augmentation for Semi-supervised Few-shot
Classification
- Authors: Xueliang Wang, Jianyu Cai, Shuiwang Ji, Houqiang Li, Feng Wu, Jie Wang
- Abstract summary: Few-shot classification aims to learn a model that can generalize well to new tasks when only a few labeled samples are available.
We propose a semi-supervised few-shot classification method that assigns an appropriate label to each unlabeled sample by a manually defined metric.
A major novelty of SALA is the task-adaptive metric, which can learn the metric adaptively for different tasks in an end-to-end fashion.
- Score: 121.63992191386502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot classification aims to learn a model that can generalize well to new
tasks when only a few labeled samples are available. To make use of unlabeled
data that are more abundantly available in real applications, Ren et al.
\shortcite{ren2018meta} propose a semi-supervised few-shot classification
method that assigns an appropriate label to each unlabeled sample by a manually
defined metric. However, the manually defined metric fails to capture the
intrinsic property in data. In this paper, we propose a
\textbf{S}elf-\textbf{A}daptive \textbf{L}abel \textbf{A}ugmentation approach,
called \textbf{SALA}, for semi-supervised few-shot classification. A major
novelty of SALA is the task-adaptive metric, which can learn the metric
adaptively for different tasks in an end-to-end fashion. Another appealing
feature of SALA is a progressive neighbor selection strategy, which selects
unlabeled data with high confidence progressively through the training phase.
Experiments demonstrate that SALA outperforms several state-of-the-art methods
for semi-supervised few-shot classification on benchmark datasets.
Related papers
- RankMatch: A Novel Approach to Semi-Supervised Label Distribution
Learning Leveraging Inter-label Correlations [52.549807652527306]
This paper introduces RankMatch, an innovative approach for Semi-Supervised Label Distribution Learning (SSLDL)
RankMatch effectively utilizes a small number of labeled examples in conjunction with a larger quantity of unlabeled data.
We establish a theoretical generalization bound for RankMatch, and through extensive experiments, demonstrate its superiority in performance against existing SSLDL methods.
arXiv Detail & Related papers (2023-12-11T12:47:29Z) - Prompt-based Pseudo-labeling Strategy for Sample-Efficient Semi-Supervised Extractive Summarization [12.582774521907227]
Semi-supervised learning (SSL) is a widely used technique in scenarios where labeled data is scarce and unlabeled data is abundant.
Standard SSL methods follow a teacher-student paradigm to first train a classification model and then use the classifier's confidence values to select pseudo-labels.
We propose a prompt-based pseudo-labeling strategy with LLMs that picks unlabeled examples with more accurate pseudo-labels.
arXiv Detail & Related papers (2023-11-16T04:29:41Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
Few-shot adaptation methods do not fare well in the taxonomic open set (TOS) setting.
We propose a prompt tuning technique that calibrates the hierarchical consistency of model predictions.
A new Prompt Tuning for Hierarchical Consistency (ProTeCt) technique is then proposed to calibrate classification across label set granularities.
arXiv Detail & Related papers (2023-06-04T02:55:25Z) - Boosting Semi-Supervised Learning by Exploiting All Unlabeled Data [21.6350640726058]
Semi-supervised learning (SSL) has attracted enormous attention due to its vast potential of mitigating the dependence on large labeled datasets.
We propose two novel techniques: Entropy Meaning Loss (EML) and Adaptive Negative Learning (ANL)
We integrate these techniques with FixMatch, and develop a simple yet powerful framework called FullMatch.
arXiv Detail & Related papers (2023-03-20T12:44:11Z) - Meta Objective Guided Disambiguation for Partial Label Learning [44.05801303440139]
We propose a novel framework for partial label learning with meta objective guided disambiguation (MoGD)
MoGD aims to recover the ground-truth label from candidate labels set by solving a meta objective on a small validation set.
The proposed method can be easily implemented by using various deep networks with the ordinary SGD.
arXiv Detail & Related papers (2022-08-26T06:48:01Z) - Pseudo-Labeling Based Practical Semi-Supervised Meta-Training for Few-Shot Learning [93.63638405586354]
We propose a simple and effective meta-training framework, called pseudo-labeling based meta-learning (PLML)
Firstly, we train a classifier via common semi-supervised learning (SSL) and use it to obtain the pseudo-labels of unlabeled data.
We build few-shot tasks from labeled and pseudo-labeled data and design a novel finetuning method with feature smoothing and noise suppression.
arXiv Detail & Related papers (2022-07-14T10:53:53Z) - Few-shot Learning via Dependency Maximization and Instance Discriminant
Analysis [21.8311401851523]
We study the few-shot learning problem, where a model learns to recognize new objects with extremely few labeled data per category.
We propose a simple approach to exploit unlabeled data accompanying the few-shot task for improving few-shot performance.
arXiv Detail & Related papers (2021-09-07T02:19:01Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Training image classifiers using Semi-Weak Label Data [26.04162590798731]
In Multiple Instance learning (MIL), weak labels are provided at the bag level with only presence/absence information known.
This paper introduces a novel semi-weak label learning paradigm as a middle ground to mitigate the problem.
We propose a two-stage framework to address the problem of learning from semi-weak labels.
arXiv Detail & Related papers (2021-03-19T03:06:07Z) - Coping with Label Shift via Distributionally Robust Optimisation [72.80971421083937]
We propose a model that minimises an objective based on distributionally robust optimisation (DRO)
We then design and analyse a gradient descent-proximal mirror ascent algorithm tailored for large-scale problems to optimise the proposed objective.
arXiv Detail & Related papers (2020-10-23T08:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.