Probabilistic Kolmogorov-Arnold Network
- URL: http://arxiv.org/abs/2104.01714v7
- Date: Mon, 07 Oct 2024 21:14:43 GMT
- Title: Probabilistic Kolmogorov-Arnold Network
- Authors: Andrew Polar, Michael Poluektov,
- Abstract summary: The present paper proposes a method for estimating probability distributions of the outputs in the case of aleatoric uncertainty.
The suggested approach covers input-dependent probability distributions of the outputs, as well as the variation of the distribution type with the inputs.
Although the method is applicable to any regression model, the present paper combines it with KANs, since the specific structure of KANs leads to computationally-efficient models' construction.
- Score: 1.4732811715354455
- License:
- Abstract: The Kolmogorov-Arnold network (KAN) is a regression model that is based on a representation of an arbitrary continuous multivariate function by a composition of functions of a single variable. Experimentally-obtained datasets for regression models typically include uncertainties, which in some cases, cannot be neglected. The conventional way to account for the latter is to model confidence intervals of the systems' outputs in addition to the expected values of the outputs. However, such information may be insufficient, and in some cases, researchers aim to obtain probability distributions of the outputs. The present paper proposes a method for estimating probability distributions of the outputs in the case of aleatoric uncertainty (i.e. for systems that produce different outputs each time an experiment is executed with the same inputs). The suggested approach covers input-dependent probability distributions of the outputs and is capable of capturing the multi-modality, as well as the variation of the distribution type with the inputs. Although the method is applicable to any regression model, the present paper combines it with KANs, since the specific structure of KANs leads to computationally-efficient models' construction. The source code is available online.
Related papers
- Unsupervised Representation Learning from Sparse Transformation Analysis [79.94858534887801]
We propose to learn representations from sequence data by factorizing the transformations of the latent variables into sparse components.
Input data are first encoded as distributions of latent activations and subsequently transformed using a probability flow model.
arXiv Detail & Related papers (2024-10-07T23:53:25Z) - Logistic-beta processes for dependent random probabilities with beta marginals [58.91121576998588]
We propose a novel process called the logistic-beta process, whose logistic transformation yields a process with common beta marginals.
It can model dependence on both discrete and continuous domains, such as space or time, and has a flexible dependence structure through correlation kernels.
We illustrate the benefits through nonparametric binary regression and conditional density estimation examples, both in simulation studies and in a pregnancy outcome application.
arXiv Detail & Related papers (2024-02-10T21:41:32Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
Learning the multivariate distribution of data is a core challenge in statistics and machine learning.
In this work, we aim to learn multivariate cumulative distribution functions (CDFs), as they can handle mixed random variables.
We show that any grid sampled version of a joint CDF of mixed random variables admits a universal representation as a naive Bayes model.
We demonstrate the superior performance of the proposed model in several synthetic and real datasets and applications including regression, sampling and data imputation.
arXiv Detail & Related papers (2022-10-13T16:18:46Z) - Adversarial sampling of unknown and high-dimensional conditional
distributions [0.0]
In this paper the sampling method, as well as the inference of the underlying distribution, are handled with a data-driven method known as generative adversarial networks (GAN)
GAN trains two competing neural networks to produce a network that can effectively generate samples from the training set distribution.
It is shown that all the versions of the proposed algorithm effectively sample the target conditional distribution with minimal impact on the quality of the samples.
arXiv Detail & Related papers (2021-11-08T12:23:38Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Goal-oriented adaptive sampling under random field modelling of response
probability distributions [0.6445605125467573]
We consider cases where the spatial variation of response distributions does not only concern their mean and/or variance but also other features including for instance shape or uni-modality versus multi-modality.
Our contributions build upon a non-parametric Bayesian approach to modelling the thereby induced fields of probability distributions.
arXiv Detail & Related papers (2021-02-15T15:55:23Z) - Distributional Random Forests: Heterogeneity Adjustment and Multivariate
Distributional Regression [0.8574682463936005]
We propose a novel forest construction for multivariate responses based on their joint conditional distribution.
The code is available as Python and R packages drf.
arXiv Detail & Related papers (2020-05-29T09:05:00Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.