Learning Multivariate CDFs and Copulas using Tensor Factorization
- URL: http://arxiv.org/abs/2210.07132v1
- Date: Thu, 13 Oct 2022 16:18:46 GMT
- Title: Learning Multivariate CDFs and Copulas using Tensor Factorization
- Authors: Magda Amiridi, Nicholas D. Sidiropoulos
- Abstract summary: Learning the multivariate distribution of data is a core challenge in statistics and machine learning.
In this work, we aim to learn multivariate cumulative distribution functions (CDFs), as they can handle mixed random variables.
We show that any grid sampled version of a joint CDF of mixed random variables admits a universal representation as a naive Bayes model.
We demonstrate the superior performance of the proposed model in several synthetic and real datasets and applications including regression, sampling and data imputation.
- Score: 39.24470798045442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning the multivariate distribution of data is a core challenge in
statistics and machine learning. Traditional methods aim for the probability
density function (PDF) and are limited by the curse of dimensionality. Modern
neural methods are mostly based on black-box models, lacking identifiability
guarantees. In this work, we aim to learn multivariate cumulative distribution
functions (CDFs), as they can handle mixed random variables, allow efficient
box probability evaluation, and have the potential to overcome local sample
scarcity owing to their cumulative nature. We show that any grid sampled
version of a joint CDF of mixed random variables admits a universal
representation as a naive Bayes model via the Canonical Polyadic (tensor-rank)
decomposition. By introducing a low-rank model, either directly in the raw data
domain, or indirectly in a transformed (Copula) domain, the resulting model
affords efficient sampling, closed form inference and uncertainty
quantification, and comes with uniqueness guarantees under relatively mild
conditions. We demonstrate the superior performance of the proposed model in
several synthetic and real datasets and applications including regression,
sampling and data imputation. Interestingly, our experiments with real data
show that it is possible to obtain better density/mass estimates indirectly via
a low-rank CDF model, than a low-rank PDF/PMF model.
Related papers
- Robust training of implicit generative models for multivariate and heavy-tailed distributions with an invariant statistical loss [0.4249842620609682]
We build on the textitinvariant statistical loss (ISL) method introduced in citede2024training.
We extend it to handle heavy-tailed and multivariate data distributions.
We assess its performance in generative generative modeling and explore its potential as a pretraining technique for generative adversarial networks (GANs)
arXiv Detail & Related papers (2024-10-29T10:27:50Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows [46.51077762143714]
We propose a simple approach using surjective normalizing flows to identify out-of-distribution data sets in deep neural network models.
We show that our method can reliably discern out-of-distribution data from in-distribution data.
arXiv Detail & Related papers (2023-11-01T09:08:35Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Marginalizable Density Models [14.50261153230204]
We present a novel deep network architecture which provides closed form expressions for the probabilities, marginals and conditionals of any subset of the variables.
The model also allows for parallelized sampling with only a logarithmic dependence of the time complexity on the number of variables.
arXiv Detail & Related papers (2021-06-08T23:54:48Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.