BBAEG: Towards BERT-based Biomedical Adversarial Example Generation for
Text Classification
- URL: http://arxiv.org/abs/2104.01782v1
- Date: Mon, 5 Apr 2021 05:32:56 GMT
- Title: BBAEG: Towards BERT-based Biomedical Adversarial Example Generation for
Text Classification
- Authors: Ishani Mondal
- Abstract summary: We propose BBAEG (Biomedical BERT-based Adversarial Example Generation), a black-box attack algorithm for biomedical text classification.
We demonstrate that BBAEG performs stronger attack with better language fluency, semantic coherence as compared to prior work.
- Score: 1.14219428942199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Healthcare predictive analytics aids medical decision-making, diagnosis
prediction and drug review analysis. Therefore, prediction accuracy is an
important criteria which also necessitates robust predictive language models.
However, the models using deep learning have been proven vulnerable towards
insignificantly perturbed input instances which are less likely to be
misclassified by humans. Recent efforts of generating adversaries using
rule-based synonyms and BERT-MLMs have been witnessed in general domain, but
the ever increasing biomedical literature poses unique challenges. We propose
BBAEG (Biomedical BERT-based Adversarial Example Generation), a black-box
attack algorithm for biomedical text classification, leveraging the strengths
of both domain-specific synonym replacement for biomedical named entities and
BERTMLM predictions, spelling variation and number replacement. Through
automatic and human evaluation on two datasets, we demonstrate that BBAEG
performs stronger attack with better language fluency, semantic coherence as
compared to prior work.
Related papers
- Improving Extraction of Clinical Event Contextual Properties from Electronic Health Records: A Comparative Study [2.0884301753594334]
This study performs a comparative analysis of various natural language models for medical text classification.
BERT outperforms Bi-LSTM models by up to 28% and the baseline BERT model by up to 16% for recall of the minority classes.
arXiv Detail & Related papers (2024-08-30T10:28:49Z) - Multi-level biomedical NER through multi-granularity embeddings and
enhanced labeling [3.8599767910528917]
This paper proposes a hybrid approach that integrates the strengths of multiple models.
BERT provides contextualized word embeddings, a pre-trained multi-channel CNN for character-level information capture, and following by a BiLSTM + CRF for sequence labelling and modelling dependencies between the words in the text.
We evaluate our model on the benchmark i2b2/2010 dataset, achieving an F1-score of 90.11.
arXiv Detail & Related papers (2023-12-24T21:45:36Z) - Biomedical Language Models are Robust to Sub-optimal Tokenization [30.175714262031253]
Most modern biomedical language models (LMs) are pre-trained using standard domain-specific tokenizers.
We find that pre-training a biomedical LM using a more accurate biomedical tokenizer does not improve the entity representation quality of a language model.
arXiv Detail & Related papers (2023-06-30T13:35:24Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - Biomedical Named Entity Recognition via Dictionary-based Synonym
Generalization [51.89486520806639]
We propose a novel Synonym Generalization (SynGen) framework that recognizes the biomedical concepts contained in the input text using span-based predictions.
We extensively evaluate our approach on a wide range of benchmarks and the results verify that SynGen outperforms previous dictionary-based models by notable margins.
arXiv Detail & Related papers (2023-05-22T14:36:32Z) - BioGPT: Generative Pre-trained Transformer for Biomedical Text
Generation and Mining [140.61707108174247]
We propose BioGPT, a domain-specific generative Transformer language model pre-trained on large scale biomedical literature.
We get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks respectively, and 78.2% accuracy on PubMedQA.
arXiv Detail & Related papers (2022-10-19T07:17:39Z) - Label Dependent Attention Model for Disease Risk Prediction Using
Multimodal Electronic Health Records [8.854691034104071]
Disease risk prediction has attracted increasing attention in the field of modern healthcare.
One challenge of applying AI models for risk prediction lies in generating interpretable evidence.
We propose the method of jointly embedding words and labels.
arXiv Detail & Related papers (2022-01-18T07:21:20Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
We present the first Chinese Biomedical Language Understanding Evaluation benchmark.
It is a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification.
We report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
arXiv Detail & Related papers (2021-06-15T12:25:30Z) - A Lightweight Neural Model for Biomedical Entity Linking [1.8047694351309205]
We propose a lightweight neural method for biomedical entity linking.
Our method uses a simple alignment layer with attention mechanisms to capture the variations between mention and entity names.
Our model is competitive with previous work on standard evaluation benchmarks.
arXiv Detail & Related papers (2020-12-16T10:34:37Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
We show that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains.
Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks.
arXiv Detail & Related papers (2020-07-31T00:04:15Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.