Binary Neural Network for Speaker Verification
- URL: http://arxiv.org/abs/2104.02306v1
- Date: Tue, 6 Apr 2021 06:04:57 GMT
- Title: Binary Neural Network for Speaker Verification
- Authors: Tinglong Zhu, Xiaoyi Qin, Ming Li
- Abstract summary: This paper focuses on how to apply binary neural networks to the task of speaker verification.
Experiment results show that, after binarizing the Convolutional Neural Network, the ResNet34-based network achieves an EER of around 5%.
- Score: 13.472791713805762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although deep neural networks are successful for many tasks in the speech
domain, the high computational and memory costs of deep neural networks make it
difficult to directly deploy highperformance Neural Network systems on
low-resource embedded devices. There are several mechanisms to reduce the size
of the neural networks i.e. parameter pruning, parameter quantization, etc.
This paper focuses on how to apply binary neural networks to the task of
speaker verification. The proposed binarization of training parameters can
largely maintain the performance while significantly reducing storage space
requirements and computational costs. Experiment results show that, after
binarizing the Convolutional Neural Network, the ResNet34-based network
achieves an EER of around 5% on the Voxceleb1 testing dataset and even
outperforms the traditional real number network on the text-dependent dataset:
Xiaole while having a 32x memory saving.
Related papers
- Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Neural Network Pruning as Spectrum Preserving Process [7.386663473785839]
We identify the close connection between matrix spectrum learning and neural network training for dense and convolutional layers.
We propose a matrix sparsification algorithm tailored for neural network pruning that yields better pruning result.
arXiv Detail & Related papers (2023-07-18T05:39:32Z) - A Faster Approach to Spiking Deep Convolutional Neural Networks [0.0]
Spiking neural networks (SNNs) have closer dynamics to the brain than current deep neural networks.
We propose a network structure based on previous work to improve network runtime and accuracy.
arXiv Detail & Related papers (2022-10-31T16:13:15Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Neural Network Quantization for Efficient Inference: A Survey [0.0]
Neural network quantization has recently arisen to meet this demand of reducing the size and complexity of neural networks.
This paper surveys the many neural network quantization techniques that have been developed in the last decade.
arXiv Detail & Related papers (2021-12-08T22:49:39Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - Max and Coincidence Neurons in Neural Networks [0.07614628596146598]
We optimize networks containing models of the max and coincidence neurons using neural architecture search.
We analyze the structure, operations, and neurons of optimized networks to develop a signal-processing ResNet.
The developed network achieves an average of 2% improvement in accuracy and a 25% improvement in network size across a variety of datasets.
arXiv Detail & Related papers (2021-10-04T07:13:50Z) - Building Compact and Robust Deep Neural Networks with Toeplitz Matrices [93.05076144491146]
This thesis focuses on the problem of training neural networks which are compact, easy to train, reliable and robust to adversarial examples.
We leverage the properties of structured matrices from the Toeplitz family to build compact and secure neural networks.
arXiv Detail & Related papers (2021-09-02T13:58:12Z) - Reservoir Stack Machines [77.12475691708838]
Memory-augmented neural networks equip a recurrent neural network with an explicit memory to support tasks that require information storage.
We introduce the reservoir stack machine, a model which can provably recognize all deterministic context-free languages.
Our results show that the reservoir stack machine achieves zero error, even on test sequences longer than the training data.
arXiv Detail & Related papers (2021-05-04T16:50:40Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.